

EARTH'S RESOURCES & THE ENVIRONMENTS SHAAS N HAMDAN

sedimentary rock made by plant remain (lignin, altered cellulose, terrestrial vascular plants)

- is the past fuel, & the potential fuel of future Petrographucaly: consist of macerals grains
- Macerals: Vitrinite (wood), Intertinite
- (fungal), Exinite (algae), & Liptinite (spores) Coalification: Break down of hydrocarbon
- to carbon by P-T & release of Gases & H2O
- **Environment of Deposition:**
 - 1. Swamps in flood plains
 - 2. Coastal barrier island system
 - 3. Deltas of rivers

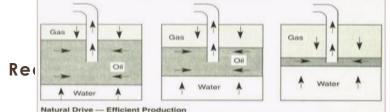
Coal

Gas

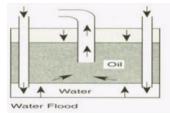
Crude Oil & Natural

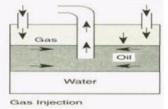
- 4. Poorly drained regions under glacier
- What is required? (for deposition)
 - Stable sedimentary conditions in large area & long time
 - 2. Abundant & continuous supply of organic matter
- Coal Seams (layers): Thickness of seam 1/10 original material thickness (usually <100 cm)
 - Coal Distribution: Related to plate tectonics,
- Non in pre-Silurian
 - Abundant in Carboniferous & Permian & Jurassic-Tertiary period

Coal Production & Environmental Impacts (EI)			
Open Pit	Include: Strip & Contour Mining El: reclamation & Groundwater quality (increase in pH)		
Underground	 Include: Room-pillar, & Long wall (LW) (continuous mining) El: Black lung disease, Fires & explosions (due to CH₄), & Subsidence (LW are designed to collapse within few months) 		
Coal Burning	El: air-hydro pollutions (SOx, NOx)		

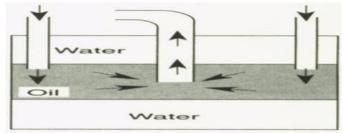

The most expensive basic commodity, & Ruling the global economy since late 20th century •

Origin of Oil & Natural Gas:


- 1. Short (CH₄, C_2H_6 , C_3H_8) or long chains (C_{4-30}) hydrocarbons (algae & plants)
- Fats & lipids \rightarrow burial, $O^{-2} \rightarrow$ Kerogen 2. (insoluble form of organic matter) \rightarrow T, P (catagenesis) \rightarrow crude oil generation $(50-60^{\circ}C, oil window) \rightarrow gas (100^{\circ}C)$
- Source rock: shale, mudstone, & chalk
- Cap rock: low permeability (gypsum, salt, shale, mudstone)
- **Reservoir rock:** high porosity & permeability (sandstone, dolomite, fossiliferous lime.)
- **Geological Traps:**
 - 1. structural: anticline, faults, salt domes
 - 2. stratigraphic: lense, pinching out, reef, & unconformity
 - **Environmental Impact of Oil-Gas Production**
 - 1. Subsidence & Collapse
 - Gas & Water spills (brine water, Radium) 2.
 - Reclamation (plug, cement) remove 3. surface installation


Oil & Gas Production

Primary Production by exploiting natural drive force (P of natural gas in the field)



2. Secondary production: increase oil recovery (latter stage), by gas injection & water flooding

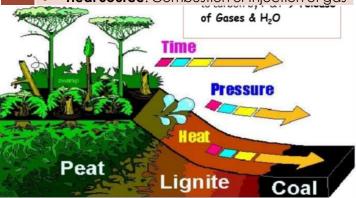
 Tertiary Production: (Enhanced Oil Recovery, EOR) CO₂ Injection, Combustion of oil-Gas on margins of a field, & Injection of alkaline solution to reduce viscosity

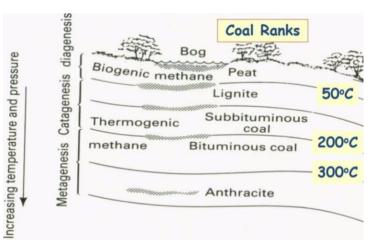
HO: Oil not flow in normal reservoir conditions

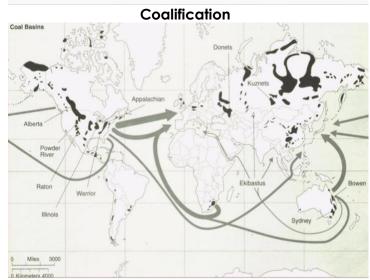
- For economic production it will require tertiary recovery
- **Tar Sand**: Oil that will not flow at all even if using tertiary recovery
- Found in all types of rocks but large accumulation in sandstone
- can be mined & physically separated

Specifications of H.O & Tar Sand:

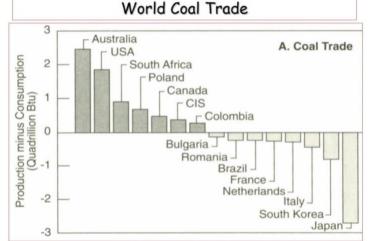
- 1. can't be converted to gasoline easily
- 2. yield a large fraction of heavy products
- 3. have high Sulfur & Nitrogen compounds
- 4. contain high metal Con. (Ni, V, Cr)

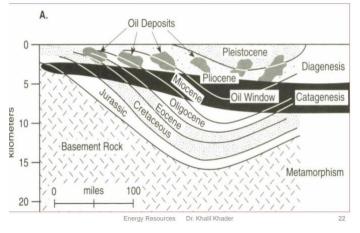

 Oil Shale (Bituminous Lime): Shale which can be processed to obtain oil, & source rock which was not being able to give its oil


• Problems:


<u>Heavy</u> Oil (HO) & Tar Sand

Oil Shale

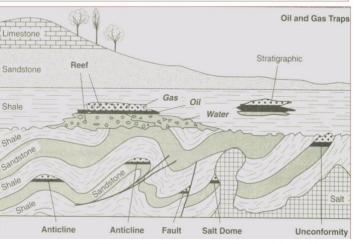

- 1. Flocculation in oil prices
- 2. Technical & Environmental problems
- 3. Huge water consumption (2-5 times volume of oil)
- Environmental Problems: From 1ton, gases emitted 20-40ppmSO₂, 140-200ppmNOx, 150ppmCO, 14ppmCO₂, & Particulate 50%
 - Oil Recovery (Pyrolysis): It is a process that releases hydrocarbons & gases or solids by Crushing (pulverizing) or Heating (500-1000°)
 Heat Source: Combustion or Injection of gas



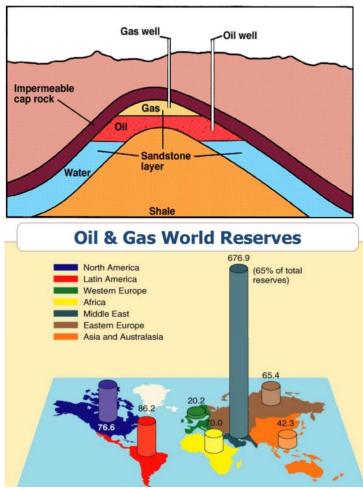
Coal Distribution

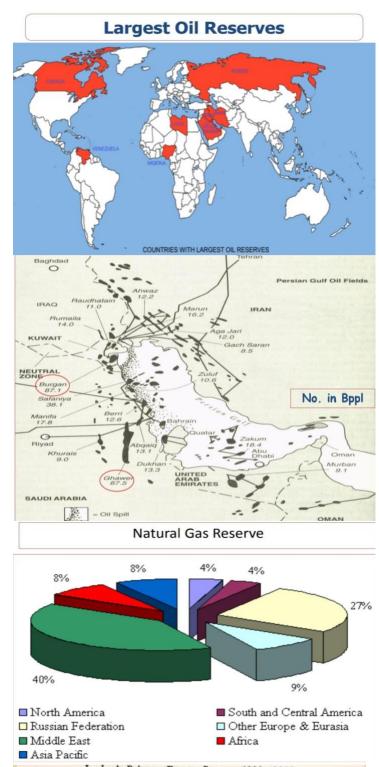


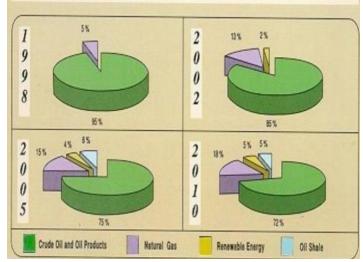
Oil & Gas Formation



Shaas Hamdan


Earth Recourse

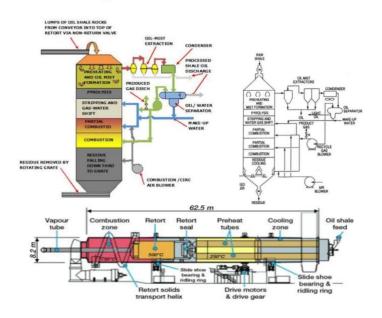

Geology of Oil and Gas

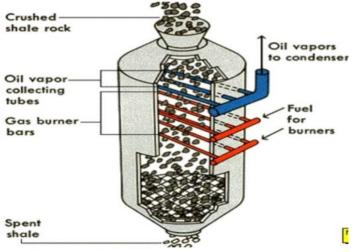

Crude Oil and Natural Gas Pool

Shaas Hamdan

Jordan's Primary Energy Sources 1998 - 2010

Earth Recourse


Oil Shale Conversion


- Oil shale mined & processed to generate oil similar to oil pumped from oil wells
- Extracting oil from oil shale more complex than conventional oil recovery & more expensive
- The oil substances in oil shale are solid & cannot be pumped directly out of the ground. But must be mined & then heated to a high temperature (a process called retorting)
 - Is a vertical shaft retorts, used with increasing success & efficiency in Scotland
 - The Gas Combustion Retort (GCR): is one of the most successful vertical retorts, achieves high retorting & thermal efficiencies. require no cooling water, an important feature in semi-arid regions (A variation called Petro-Six is operating in Brazil)
 - Crushed shale moves downward by gravity, & recycled gases enter bottom & heated by retorted shale, Air is injected & mixes with the rising hot re-cycle gases

Vertical surface Retorts

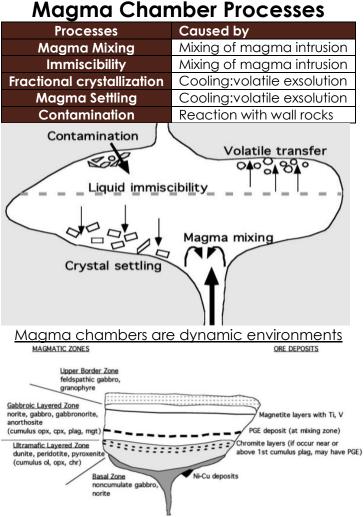
Horizontal Retorts kilns for pyrolysis

- Combustion of gases & residual carbon from spent shale heats the raw shale above the combustion zone to retorting T
- Oil vapors & gases cooled by the incoming hale leave the top of the retort as a mist
- JOSCO II: preheated shale in a bed, then circulated the shale in a hot rotating drum with heated ceramic balls.
- The ATP process combines gas recirculation & direct & indirect heat transfer from circulated hot solids in a rotating kiln, is largely energy self-sufficient
 - Some of the hot processed shale is recirculated in the retort with fresh shale to provide pyrolysis heat by direct, solid-tosolid heat transfer
 - ATP reported to increase kerogen oil & gas yields, improve thermal efficiency, reduce process water needs, & minimize residual coke on spent shale, enabling environmentally safe disposal. Figure 1. Gas Combustion Retort

Oil Recovery (Pyrolysis)

Oil Shale in Jordan

- Characteristics: Avg. thickness 20m, overburden up to 4, Proven Reserves 4×10¹⁰, & Recoverable Oil 4.0×109 (4×1010 × 10%) which equal to Jordan energy consumption for 1000yr (by using 4.0M/y)
- **Chemistry**: Recoverable oil content is <10%, Sulfur content is high (10%), with High concentration of V, Mo, Zn, Ni, Cr, Co, & U
- Stratigraphy:
 - 1. Muwaqqar Chalk Marl Formation (Maastrichtian-Palaeocene)
 - 2. Wadi Shallala Formation (Eocene)
- Location: السلطاني , حوض اللجون, Ath-Thamad, شلالة & البرموك , جرف الدرويش, Attarat Um Gudran


Earth Recourse

Magmatic Deposits

 Magmatic ores: found within intrusive rocks (UM-M) emplaced from deep, mantle sources

•					
(UM-M)	•	deep, mantle sources			
	Magmatic Or				
		stallization of silicates: Cr			
		ne Fe-Ti deposits			
Processes		ide melt: Pt, PGE, Ni-Cu-PGE			
of forming	3. Carbonate-me				
	crystallization:carbonatite				
		antle minerals: diamonds			
		intrusions: Cr, PGE, Ti, V, & Ni			
		abbroic intrusions as feeders			
Environ-		flood basalts (Cr,Ni,Cu,PGE)			
ments		amafic extrusive): Ni,Cu,PGE			
		trusions: REE, & Cu			
	 Anorthositic inf Kimberlites: dia 				
• • • •		ed complex: large Cr & PGE ed complex: large PGE			
Large		ns: very large Ni-Cu-PGE			
deposits		bleme layer intrusion: Ni-Cu			
dominate		frica field, N-Canada, Russia			
		: Ni, Cr, Pt, Pd, & diamond			
	The major of: C				
A A	Process	critical for			
Magmatic	Magma mixing	Cr, Ni, Cu, PGE			
ore	Ore contamination				
deposit deposits	Sulfide saturation	Ni, Cu, PGE			
aeposiis		partition into a sulfide liquid			
		r is critical for many deposits from deep crustal levels			
		on) to surface (komatiites)			
. Mafia r					
		, mafic minerals <90%)			
 Ultramo 		iO ₂ , >90%mafic mineral			
	Plutonic Mafic	Rocks (M)			
Anorthosi	e calcic PI, <10	0%mafic minerals			
Gabbro	Calcic Pl (Ar	>50), Cpx>Opx, Ol, Hbl			
Norite		>50), Cpx <opx, hbl<="" ol,="" th=""></opx,>			
Troctolite		little or no pyroxene			
постопіе					
	Volcanic Mafie				
Tholeiitic		•			
	Plutonic Ultramaf	ic Rocks (UM)			
Pyroxenit	e Px, 30%OI	Harzburgit Ol, Opx			
Bronzitite		Iherzolit Ol, Cpx			
Peridotite		Dunite 90-10001			
	'olcanic Ultrama	fic Rocks (UM)			
Picritic bo	asalt Ol-rich ba	salt			
Komatii	te High Mg b	pasalt			
Ma	fic C	Felsic			
	cales Oxides scontinuous) (Continuous)	Silicates (Continuous)			
	line	Dunite			
1500	Chromite	Plagloclase feldspars			
• 1		Ca(Anorthile)			
10	hopyroxens Cumulus Bronzile-enstatite) ↓ ↓	(Labradorite) Norlie rocks			
1100	Magnetite	(Bytownite) Gabbro			
10	opyroxene Augite) Magnetite	(Andesine)			
Hor	nbiende † înterstitial	(Oligoclase) Diorite Granitold Monzonite rocks			
900 Bio	ite + K-feldspar +	Na(Albite) Granite			
600	Quertz				
	Muscovite				
300-500	Pegmatites, hypogene hydrol	ihermal solutions			
	Bowen's Reac	tion Series			
order of c		tion Series nafic & felsic magmas			

order of crystallization of mafic & felsic magmas Shaas Hamdan Ear

Layered Mafic Intrusion (rang: from Km-8Km thick)

- **Cumulate**: layered complex rock, consisting of gravitationally settled grains (cumulus crystals) cemented by trapped or interstitial magma (intercumulus & postcumulus liquids)
- **Cumulus crystal**: grow in equilibrium with main magma body & then gravitationally settled
- Intercumulus liquid: portion of the silicate melt trapped between cumulus minerals
- **Postcumulate minerals**: forms by crystallization of intercumulus, overgrowths or secondary enlargement of cumulus minerals, & partial replacement of cumulus minerals
- **cumulate classification**: done by cumulate mineral rather than by their total mode
- Mode: the actual mineral composition of rock
- Poikilitic texture: large, anhedral intercumulus crystals (oikocrysts) that enclose cumulus grains
- **Rhythmic layering:** have scales between mm-100'sm; individual layer are commonly graded
- Cryptic layering: layering based on mineral composition trend & trace element distribution
- Crystallization sequence layering: defined by changes in cumulus mineral assemblage. the most important type to study layered intrusions
- **band or seam layers:** caused by abrupt mineral changes & not part of rhythmic layering. Describe of African occurrences (Crseam) & analogouser at the Stillwater

Earth Recourse

Textural Criteria for Cumulus & Postcumulus Minerals				
Criteria	Cumulus		Postcumulus	
Habit	Columnar, Equant, Tabular, Rounded, Embayed		Olikocrystals, Space Filling, Replacement of cumulus crystals	
Shape	Subhe	dral,Euhedral	Anhedral	
Size	0.1mm	n – 1mm	<0.5mm – 30cm	
Orienta tion		le orientation le thin-section	<3 orientations in a single thin-section	
		aming Cumulus		
OI:Olivin	e, PI:Plc	agioclase, Opx:	Bronzite, Cpx:Augite	
Rocks		Cumulus	Abbreviation	
Dunite	Dunite Ol		oC	
Bronzi	te Opx		bC	
Harzburg	gite OI + Opx		obC	
Anortho	Anorthosite Pl		рС	
Norite	Norite PI + Opx		pbC	
Gabbro PI + Cpx		paC		
Gabbronorite PI + C		PI + Opx + Cpx	pbaC	
Troctolite PI + OI		PI + OI	роС	
Ol-Gab	I-Gabbro PI + Opx + OI		paoC	

Bushveld Complex, RSA

- Three major lithological units:
 - 1. Rooiberg felsites: And. to Rhyo. lava flows
 - 2. **Rustenburg Layered Series:** layered UM to M intrusive rocks (with Cr, PGE,V)
 - 3. Bushveld granite: closing stage
- Complex emplaced into Transvall Sequence, 11km thick succession of calcareous & pelitic sediments with volcanic horizons
- Mafic rocks are intruded in four bodies:
 - 1. Potgietersrus Compartment Complex
 - 2. Far western Bushveld Complex
 - 3. Complex-western Bushveld Complex
 - 4. Complex–eastern Bushveld Complex

Merensky Reef Critical zone			
Chromitite { Extreme differentiation			
layers	Lower zone		
	Marginal zone		
	Pretoria series		
	Chromite in the Bushveld Complex		
Host	Chromitite seams occur in Lower & Upper		
	Critical Zones in gabboric composition (Opx+Pl Chromite bodies: occur in parallel layers, in a		
	recognizable position (<1m thick), Bushveld		
Form	Steelport main seam continuous for 55km		
FOITT	Inclusions in seams are abundant & consist of		
	other rock from surrounding zones (Critical		
	Zone), display compaction structure near them Euhedral to subhedral aggregates with variable		
Ore	amounts of intercumulus & postcumulus silicate		
texture	Range from massive polygonal to net(poikilitic)		
	where cumulus silicates become predominant		
	Seams have a consistent & large change in		
	mineralogy towards lower Cr/Fe & Mg/Fe ratios		
Chemical	Only miniscule chemical variations laterally:		
variations	imply post-cumulus & subsolidus equilibration		
	limited to thin subsystem across whose vertical boundaries equilibration never took place		
	Formed by fractional crystallization		
	Problem : Chromite crystallizing with silicates not		
Origin	have density difference to concen-trate by		
Crigin	gravitation alone, but Mixing of magmas can		
	cause the resulting mixed magma to move into		
	the chromite field & only crystallize		
	<i>t</i> ,		
	Q1 //		
	Mixing of 2		
	A		
0	Opx A X Magmas		
Ut Ut			

	/ \t	Ja	-
~/	Olivine		
01			Ch

Chromite

14

Bushveld Geochemistry

	•	5-6 cyclic units: UG1, UG2, UG3, Pseudoreef (some area), Merensky & Bastard Reef, & the lower portion of all unit have PGE
	•	The cyclic units are defined by: from top
	•	1. Chromitite-Norite-Anorthosite sequence
ወ		
οÚ		2. MgO decrease due to less bronzite up-
ΙZ		section in each cycle
ca		3. Bronzite shows Fe-enrichment trend up
riti		section through all the cycles
υ Ω		4. Plagioclase: very poorly defined, Anorthite
Upper Critical Zone		(An) increase up section in each cycle
Ipl		5. Sr increase upwards in each cycle due to
		an increase of plagioclase
		6. There is distinct decrease in 87Sr/86Sr ratio
		upward through Upper Critical Zone
		7. The break is abrupt & coincides with the
		Merensky Reef horizon

(D)	Located within bronzite cumulates (base of UG2)			stricted to the Upper Zone of the complex
UG-2 Chromitite	Main chromitite character: 75-250cm, 60-9%Cr, 5-		Fre	om base:
Ĩ	15%Pl, 5-25%bronzite, with accessory Cpx, Bio,		1.	Primary Magnetite: 0.1-10m thick concordant
Iro	sulfides, PGE, ilmenite, magnetite, & rutile			with the igneous layering
C,	There is a close correlation between Ni, Cu,& PGE		2.	8% disseminated magnetite
-2	Maxima of PGE concentration: one at the base &		3.	>20 discrete magnetite layer enclosed by
ß	one at the top of the chromitite Cryticl zone			anorthosite or troctolite or gabbro: Main
	Avg grade of UG2 = 5-10 times Merensky Reef			Magnetite Layer (most economic important)
	Ore zone: at the base or higher of Merensky unit			with 1-2.5m thick, exhibits 200km strike length
	PGE concentrated with sulfide, vicinity of Cr-layers			in W-Bushveld, 120km in E-Bushveld,100km in
	Contain: graphite, apatite, & hydrous phases			Potgietersus lobe
	compared to rest of the intrusion		•	The lower contacts between individual layers
	Characterized by pegmatoid zones (have devel-			& footwall are sharp, but often dimpled
	oped because of aqueous or hydrothermal fluids		•	Upper contacts gradational with gradual
	Merensky Base: marked by dimpling & scalloping			decrease in magnetite (magnetite layer 13 in
	of underlying norite or anorthosite (range from			E-Bushveld displays reverse contact
	dimples/m ² with 5-10cm relief, to major uncon-			relationships with a sharp top & diffuse base)
	formities or potholes up to 1km with & 10m relief)			The magnetite layers consist of Fe-Ti oxides
			•	together with silicate minerals, primarily Pl
Reef	The Merensky unit bronzitite fills potholes Ideas to			•
R	the formation of potholes include: 1. scouring by magmatic currents		•	The oxides are dominantly magnetite with
٨٧				<6% ilmenite, Magnetite crystals commonly
nsl	melting of the underlying layer as a result of increased weletiles introduced			exceed 10mm (3times larger than the
re	of increased volatiles introduced			average grain size of disseminated
Merensky	3. disruption of cumulate pile by streaming			magnetite in silicate-rich portions of intrusion
	upwards of intercumulus liquid		•	In magnetite layers, magnetite forms massive
	PGE tenor is high: 20ppm in Merensky unit sulfides	es		aggregates in which crystals acumulate
	(Pt content in 100% sulfides), & 250-600ppm in	Oxides		texture & show "annealed" 120° contacts
	Merensky Reef sulfides	Ô	•	There is a regular variation in composition of
	Magma Mixing Model of Merensky unit (PGE):	E.		magnetite with stratigraphic height: at the
	new magma rises via a series of density stratified	Fe-Ti		base high V_2O_5 (2%) & low TiO ₂ (10%), Near
	layers crystallizing PI & bronzite, entrains some of			the top low vanadium ($\frac{1}{2}$ %) & high TiO ₂ (20%)
	magma & ponds beneath PI-rich liquid higher in		•	Genesis of Fe-Ti Oxides: period of fractional
	chamber, then convects turbulently, scavenging			crystallization of basalts results in concen-
	PGE to sulfide melt before cooling, becoming less			tration of substantial amount of Fe-Ti-V in the
	dense & sinking through crystallizing PI & bronzite			late-stage residual magma, Magnetite is
				able to precipitate once the T decreased to
				intersect magnetite-spinel stability field
			•	Crystallization of PI lead to increase total Fe-
				content & the density of the residual liquid
				which accumulate as a stagnate layer on
				floor of magma chamber, When this liquid
				achieves proper Fe ₂ O ₃ /FeO ratio (function of
				oxygen fugacity, T, & water content) it will
				precipitate magnetite (magnetite-layers)
			•	With magnetite crystallization density of the
				residual liquid decrease until it is the same
				as the overlying liquid. At this point the
				liquid will mix with the overlying magma
				and magnetite precipitation will cease

Shaas Hamdan

•

Repeated cycles of residual liquid formation

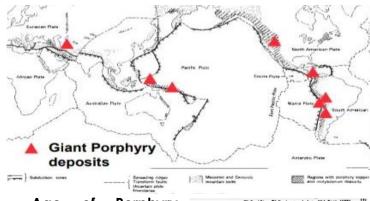
& magnetite precipitation account for the different magnetite layers. The change in V₂O₅ & TiO₂ values reflect the early depletion of the melt in vanadium due to its preferred partitioning into magnetite, & concentration

of titanium in residual melt

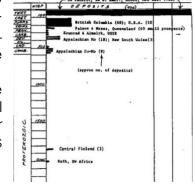
Copper Deposits

- **Porphyry**: igneous rock of any composition that contains conspicuous phenocrysts (crystals) in a fine-grained groundmass
- Porphyry copper deposit: A large body of rock (felsic-intermediate porphyritic stock) that contains disseminated & veinlet-controlled chalcopyrite & other sulfide minerals More crystalline More glassy

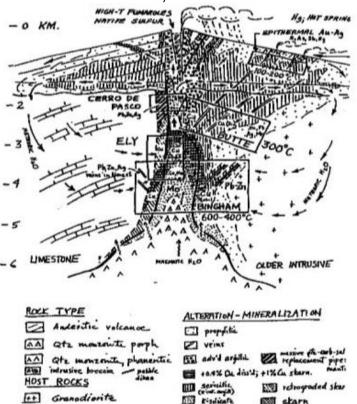
		-
Granite	Climax-type Mo	Rhyolite
z Monzonite	Porphyry Mo (Cu) Porphyry Cu (Mo)	Latite Dacite
anouionte		Dacite
Diorite	Porphyry Cu	Andesite VOLCANIC ROCKS
Gabbro	% silica (quartz)	Basalt
Peridotite		
Dunite	I	Komatiite
	z Monzonite Granodiorite Diorite Gabbro Peridotite	Z Monzonite Porphyry Mo (Cu) Biranodiorite Porphyry Cu (Mo) Diorite Porphyry Cu Gabbro % silica (quartz) Peridotite Image: Constraint of the second sec


IGNEOUS ROCKS CLASSIFICATION

- The porphyry deposit centered on intrusive porphyritic stock (intrusion)
- **Porphyry-style mineralization** may be in the mineralizing stock & in the surrounding rocks, & consists of veins & veinlets of silicate + sulfide minerals with some disseminated sulfide
- A very large volume of rock is affected by these systems (up to 1000 km³), only a small portion of this volume usually makes ore
- Porphyry systems contain broad scale (km's) vertical & horizontal wallrock alteration zones which are predictable (mineral assemblages are controlled by wallrock composition)
- Porphyry systems contain evidence of mineralizing events & changes in sulfide-silicate assemblages through time based on fluid composition & temperature
- Porphyry Cu-deposits represent 50% of world Cu-production, & characterized by very large tonnage & low grade, & are important source of by-product of Au, Mo, Ag
- e.g. N-American porphyry deposit, Chilean porphyry deposit, SW-Pacific porphyry deposit


Types of Porphyry Copper Deposits			
Types	Associated with		
Cordilleran	Granodiorite, Qz-monzonite 55-70%Si		
calc-alkaline	line Such as Andes (US)		
Cordilleran	Monzonite-Syenodiorite (47-55%Si)		
(alkaline)	Such as British Columbia		
Island Arc	c Qz-diorite-granodiorite (55-65%Si)		
(Gold) type	ype Such as: SW Pacific, Central America		

 Location of Porphyry Cu-Deposits: linear belts of andesitic volcanism related to subduction of oceanic crust along continental margins & Island arcs, form beneath subaerial volcanoes


Shaas Hamdan

Age Porphyry of Systems: Most porphyry Cudeposits are late Mesozoic-Cenozoic (<200Ma) but there are several significant older porphyry deposits (e.g. Almalyk/Uzbekistan)

 Most of porphyry Cu-deposits are young, Why? Porphyry copper deposits form in subvolcanic environments (1.5-4 km above subduction zones) & These areas are uplifted with erosion of volcanic edifices & deeper to regional magma chambers (batholiths). many deposits are eroded relatively soon after formation.

- Age of any Porphyry Systems: varies by region & reflecting periods of igneous activity
- **Porphyry Belts:** linear belts of porphyry deposit, represent positions of igneous activity in different subduction configurations, & the quality of the deposits may vary by belt

FET Limestine

Cu-DEPOSITS FORMATION

- Porphyries are related to intrusions & consist of veins indicating brittle deformation of the rocks
- Veins contains silicate & sulfide minerals which precipitated from an aqueous fluid

Aqueous Fluid Sources in Porphyry Systems

- Most silicate magmas require 2-4% H₂O to • hornblende biotite stabilize & (both common in diorites to granites)
- F-IN intrusive magmas: 1-2%H₂O
- Magmatic (2-4%)-(2-1%)=0-3% available for ultimate • ejection from the melt, & This water contains high F, Cl, S, metals (incompatible elements in minerals crystallized from the melt)
- Emplacement of large body of hot magma • Meteoric will set up convection cells of aroundwater (derived from meteoric water) if present
 - depending on CI, S contents of these waters, they can also dissolve and transport metals

Magma Crystallization & Expulsion of H₂O for **Porphyry Pluton**

Pluton crystallizing & reached saturation (water comes out of the melt), Due to its low density, this water migrates to the top of the chamber & trapped by previously-crystallized intrusive rock

- Water expands as released from the melt. & • volume increase causes increase in internal pressure within the magma chamber
- Increased internal P in the magma chamber • causes increased water solubility (water tries to go back into the melt), but this also lowers the crystallization temperature of the melt
- With increased crystallization, more water is • released to melt with consequent increase in internal P (mechanism as pluton is cooling)

If the internal P in the magma chamber exceeds the confining strength of wallrocks, the chamber catastrophically fails & the accumulated water is suddenly released

- The drop in internal P causes much of the • water dissolved in the melt to be suddenly released as well (increasing the pressure)
- Failure leads to overall P decrease that . causes effective melting T of magma to rise
- The loss of heat from the rapidly escaping • water causes the T of the melt to fall
- This combination causes the melt to quickly • quench, releasing still more water & resulting in fine-grained groundmass & a porphyritic texture if large crystals are present in melt
- If catastrophic failure causes fluids (aqueous • fluid+melt) to rise to earth surface, volcanic eruption occurs, the volatiles (H2O, CO2, SO4) & much of the metals are lost to the atmosphere as volcanic gas and ash
- Stage 3 To form a porphyry Cu-deposit, the volatiles & metals must be trapped in fractures (veins) in uppermost portion of the rapidly chilling porphyry stock & in the surrounding wallrock

Magmatic Fracture Associated with P Release -Hydrothermal Alteration & Mineralization

- The aqueous fluid near the top of the magma chamber contains alkalis (K-rich), silica, volatiles (CO₂, SO₄, CI), & metals
- This fluid may cause pervasive alteration of • semi-crystallized magma (biotization)
- With P release & catastrophic failure, veins • form in the quickly cooling magma
- Veins are filled with orthoclase (Ksp), biotite, • quartz, and/or anhydrite, & chalcopyrite.
- These early veins & alteration zones are characterized by K-bearing minerals - the alteration is termed "potassic"
- There are multiple, cross-cutting sets of potassic veins. Early veins tend to be:
 - 1. Biotite

Potassic Alteration

Propylitic Alteration

- 2. Quartz-biotite-orthoclase-magnetite
- 3. Quartz-orthoclase-biotite
- Quartz-orthoclase 4.
- 5. Quartz orthoclase chalcopyrite
- multiple vein sets indicate repeated failure • of single chamber or failure of multiple magma chambers (small stocks, dikes, etc.)
- Much of Cu (& Mo & Au) emplaced during these potassic alteration & veining events

Moving out- & upward from the zone of potassic alteration & veining, wallrocks around intrusions display a pervasive to vein controlled style of alteration where mafic minerals are converted to chlorite & calcic plagioclase is partially converted to epidote & calcite

- chlorite & epidote are green colored giving • this rock green to dark green color
- This type of alteration is termed "propylitic." & form around zones of potassic alteration, & can be formed around any intrusive body which has given off aqueous fluids

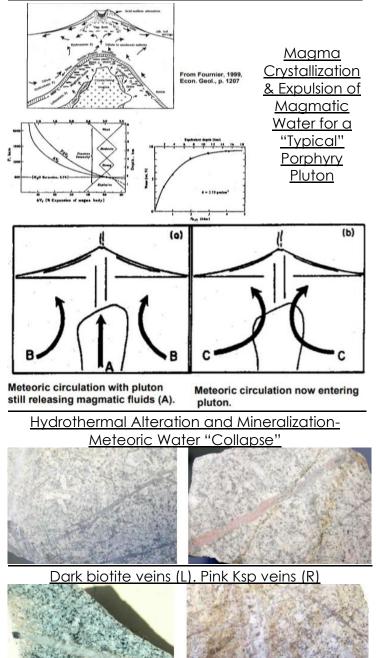
Fluid Evolution in data from Fluid Inclusions

- Fluid inclusion studies at porphyry deposits indicate paragenetically veins (K-alteration) have high homogenization T (magmatic in vein) & high salinities (aqueous fluid contained alkalis, volatiles, & metals)
- Paragenetically later veins display • progressively lower homogenization T & are commonly less saline
- Fluid inclusions in late Qz-sericite(illite-mus)-• pyrite veins in 250-200°, show low salinities
- HF derived from the magma or pulled into • the system by convection (meteoric water). Stable isotopic studies indicate that both type of fluids are involved in these late veins

QSP = late Phyllic stage of Quartz-Sericite-Pyrite The early potassic veins (& may be propylitic veins) are cut by Qz veins with sericite (illite to

QSP (Phyllic Vein) muscovite)selvages Qz-veins contain pyrite & may contain chalcopyrite & formed at lower T than the potassic veins

Qz-veins are most common near the top of the zone of potassic veins ore above the potassic zone

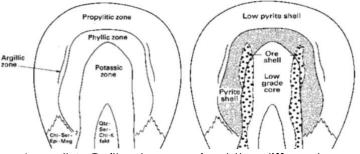

Stage 1

Stage 2

- Emplacement of a body of hot magma will set up convection cells of groundwater (derived from meteoric water)
- The convective fluid circulation patterns are controlled by pluton & wallrock permeabilities, depth of intrusion, pluton geometry, & the presence or absence of impermeable boundary within rock column
- Convective flow minimize thermal gradients in & above the pluton, while increasing them at depth & in the inflow zone along the sides of the pluton

Meteoric Water "Collapse"

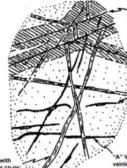
- Convection will lower T in the crystallized & fractured upper portions of he pluton to below magmatic T (to 300 - 350°C).
 - Depending on the CI, S, etc. content of the convective waters, they may also be able to dissolve & transport metals.

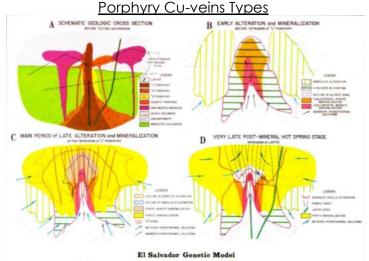


Qz vein with Ksp selvage (L), Sierrita & Qz vein with Chalcopyrite & weak Ksp selvage (R)

Shaas Hamdan

Alteration Model for Cu-Deposits


• Lowell & Guilbert model: standard for alteration & mineralization zonation for porphyry Cudeposits, emphasizes different alteration types without timing relationships between different alteration & mineralization events


- Lowell & Guilbert recognized the different age relationships, but they not focus on temporal evolution of El Salvador, Chile systems
- Gustafson & Hunt emphasized timing relations of alteration & mineralization based on mapping individual vein types & noting cross cutting relationships at El Salvador deposit (the best published account of porphyry copper)

Alteration	Vein	Morphology	Mineralogy
Туре	Туре		
Potassic	"A" Veinlet	thin, discontinuous	qtz - secondary biotite - (Ksp)
	"B" vein	mm's to cm's long mm's to cm's wide, cm's to m's long	< 5% sulfides: bn - mgt - cp >> py qtz - Ksp - (alb) - (chl) - (anhydrite) - (fluorite) <10 % sulfides; cp - py - moly
Sericitic	"D" Vein	cm's to m's wide m's to km long	sericite - qtz - py >50 % sulfides typical; Py > cp
Propylitic	veins are ran	e	
Argillic	like D-type any of the above type		kaolinite - py - cp
Weathering			montmorilionite, goethite, Cu oxides, chalcocite

Schematic Summary of major vein types present in porphyry copper deposits. All three types of veins can be present in a single hand specimen but there is a tendency for a majority of veins present to change from "A" to "D" as one moves upward and outward in a deposit. Alteration zoning is defined by the pervasive presence of a given vein / alteration type.

A" Veinlets (#1): Early aplitic reinlets containing qtz-Ksp- bio-Bn-cp-(mgt). Thin and discontinuous may posses narrow biotitic selvages. Magmatic water stage (veins wavy secause intrusive still plastic).

El Salvador Model for Porphyry Cu-Development