GEOCHEMISTRY

Shaas N Hamdan

- There are 92 naturally occurring element in the Universe (from H to U) formed in the starts by The nuclear fusion \& coming to the earth by meteorites

Chronology of the universe

The universe started like a bubble in stream. formed \& expanded rapidly as exploding, From all matter \& energy
Quarks are formed due to high T-P
It expanded \& cooled, the quarks combined to form familiar nuclear particles, which later became organized into the nuclei of $\mathrm{H} \& \mathrm{He}$
Atomic nuclei formation ($\mathrm{T}=3 \times 109 \mathrm{~K}$). This process did not go beyond the formation of He \& it lasted for about 30 minutes The T dropped to about 3000 K , electrons became attached to the atoms of $\mathbf{H} \& \mathrm{He}$ Matter \& energy were then separated from each other \& the universe became transparent to light
the matter organized into stars, galaxies,
\& galactic clusters as the universe continued to expand to the present time

- Quarks: subatomic particles \& leading candidates as fundamental blocks of matter including $p^{+} \& \eta$

- Red shift of the spectral lines due to doppler effect revealed the expanding nature of the universe

Doppler's Equation:

$$
\frac{\lambda^{\prime}}{\lambda}=1+\frac{v}{c}
$$

- In the future, will the universe end expanding? If the material contained in the universe will permit gravity to overcome expansion, then it will contract until it disappears, Since it has a beginning \& is still expanding, it cannot be infinite in size; edge of the universe cannot seen with a telescope since it takes too long for light to reach us
A simple conceptual model...
every object is moving away from every other object - space is expanding

- The age of the universe is about $14.5 \pm 1.0 \mathrm{Ga}$
- Stellar Evolution: Matter organized into hierarchy of heavenly bodies which listed in order of decreasing size: Clusters, Galaxies, Stars, pulsars, black holes, Planets, Satellites, Comets, Asteroids, Meteoroids, Dusts, Molecules, \& Atoms
> Billions of stars form a galaxy
> large number of galaxies form clusters
- Stars are the basic units in the universe: Matter evolve by nuclear reactions in a stars
- Nebular: clouds of gas (mainly H \& He) \& solid particles found in the space between the stars
- Contract to form stars whose evolution depend on their masses \& H/He ratio
- Evolution of stars described by surface T \& luminosity, which proportional to masses
- Energy production by H burning starts in core of Nebular when the $T=2 \times 10^{6} \mathrm{~K}$ \& a star is born

عند انتهاء H يبأ النجم في دمتج العناصر الأثقل مثل He فيتحول الى عملاق احمر

- $\quad>75 \%$ of the mass of the universe is $\mathrm{H}, \&>99 \% \mathrm{H}+\mathrm{He}$
- Elemental abundances drop off exponentially with increasing Z to 60 , after remain almost constant
- $\mathrm{Li}, \mathrm{Be}, \& \mathrm{~B}$ showed marked depletion to higher \& lower Z numbers due to the spallation process
- There is a pronounced peak in vicinity of Fe in addition to other less marked one at higher Z
- 2 elements (technetium, Promethium) don't occur in the solar system, because all their isotopes are unstable \& decay rapidly into another elements
- The elements with $Z>83$ (Bi) have no stable isotopes \& occur at very low abundances
- Helium Burning: In 1st-gen stars H burning to He

- First generation stars: stars that formed by the H \& He which formed by the Big-Bang (10Ma), massive stars so stayed for a very short time
- Helium burning takes place in stars having masses of 80% or more of our Sun
- If the conditions are right then He burning is initiated \& heavier elements are synthesized
$2^{4}{ }_{2} \mathrm{He} \rightarrow{ }_{4} \mathrm{Be}$ (unstable, $\mathrm{t} / 2=10-16 \mathrm{sec}$)
$3^{4}{ }_{2} \mathrm{He} \rightarrow{ }^{12}{ }_{6} \mathrm{C}$ (heavy element, triple a process)
- Second generation stars: Formed by H, He, \& some heavy elements (to Fe)
- Our sun is 2nd gen star (contains elements heavier than He such as $\mathrm{C}, \mathrm{O}, \mathrm{N}$)
- Heavy elements facilitated burning of H into He
- Our sun burning H according to the CNO cycle ${ }^{12} \mathrm{C}+{ }_{1}{ }_{1} \mathrm{H} \rightarrow{ }^{13}{ }_{7} \mathrm{~N}$-decay $\rightarrow{ }^{13}{ }_{6} \mathrm{C}$
${ }^{13}{ }_{6} \mathrm{C}+{ }_{1}{ }_{1} \mathrm{H} \rightarrow{ }^{14}{ }_{7} \mathrm{~N}$
${ }^{14}{ }_{7} \mathrm{~N}+{ }_{1} \mathrm{H} \rightarrow{ }^{15}{ }_{8} \mathrm{O}$-decay $\rightarrow{ }^{15}{ }_{7} \mathrm{~N}$
${ }_{15} \mathrm{~N}+{ }_{1} \mathrm{H} \rightarrow{ }_{6}^{12} \mathrm{C}+{ }_{2}{ }_{2} \mathrm{He}$

The differences between 1st gen \& 2nd gen. Stars		
	Produced by	Rate of diffusion
1st	H, He	slower
2nd	H, He, + heavy elements	Faster becouse havy element react as catalyst
مرك	ور المركز و الطاقة النووية بعكر	كن النجم بحالة تو ازن بين فوتين (جاذبيت)

- σ (nucleus of He) process: produced all elements in the stars during main sequence \& red giant stages, element heavier than Fe cannot be produced (due to repulsion forces between large \& +ve changed nuclei (heavy nucleus), \& σ-particles)
- explains the presence of elements with even Z:

1. Rate of fusion of heavy nucleus < other nucleus
2. Atomic formed by CNO cycle are even Z, but smaller amount of Odd Z formed by reactions among fusion products:

- In the final throes of red giant stage, a new type of nuclear reaction comes into play, producing a host of heavy nuclei in small abundance ($\boldsymbol{\eta}$-capture)

$$
\eta+A_{z} X \rightarrow{ }^{A+1}{ }_{z} X \text { (new heavier nucleus) }
$$

$56 \mathrm{Fe}+\eta \rightarrow 57 \mathrm{Fe}+\eta \rightarrow 58 \mathrm{Fe}+\eta \rightarrow 59 \mathrm{Fe}$ (unstable $\mathrm{t}_{1 / 2} 45 \mathrm{~d}$)

- هذه العطلية تكون عناصر أتقل من الحديد
- $\quad \beta$ decay is one process that unstable atoms can use to become more stable $\left(\beta^{+} \& \beta^{-}\right)$
- تتتج يسبب العناصر الغير مستقرة التي نتجت من اضمحلال النيوترون وهي شحنة سالبة (الكترون)
- If a nucleus absorbs too many neutrons, it will eventually become too n-rich to be stable \& decay by emitting e^{-}this is called β-decay (convert n into $\mathrm{p} \&$ add 1 to the atomic number) $2{ }^{14}{ }_{6} \mathrm{C}-\beta^{-} \rightarrow{ }^{14}{ }_{7} \mathrm{~N}+\mathrm{e}^{-}+\mathrm{v}^{\prime}$ (antineutrino)
One η from C capture into $p+e^{-}+v^{\prime}$
${ }^{10}{ }_{6} \mathrm{C}-\beta^{+} \rightarrow{ }^{10}{ }_{5} \mathrm{BO}+\mathrm{e}^{-}+v$ (neutrino)
سبب ندرة العناصر الثقيلة هي انها تكونت في هذا العملية خلال عملية ال
وهي مرحلة قصيرة جدا ما يفسر ندرة هذه العناصر Supernovae
- Types of neutron-capture processes (account for synthesis of all elements with $Z>$ Fe)

Process	Neutron flux	During
s-process	Moderate	Late red-giant stage
r-process	High	In supernovae

atomic number \longrightarrow

Figure 2.3
High influx of neutrons
After Brownlow, 1996

Schematic diagram of stellar

 structure at the onset of Supernova stage

ييقى النجم في حالة التتابع الرئيسي طلما بقي يدمج الهيدروجين ويتحول الى عملاق احمر عندما ينفذ الهيدروجين ويبدأ بدمج الهيليوم و عندما يصل الى مرحلة تكوين الحديد سينهار لانه ستقل طاقة الطرد المركزي الناتجة عن الاندماج النووي وسينفجر على هيئة مستعر اعظم

PROBLEMS

- How do we know that the Sun is at least a "second generation" star? Our sun contains H, He, \& some heavy elements (e.g. C, O, N) which formed after a supernova explosion of a 1 st gen. Star \& react as catalysts to speed up the fusion of H
- Elements with even Z are more abundant than their neighbors with odd atomic numbers, Why? Elements with even \mathbf{Z} are more stable than those with odd \mathbf{Z} (Rate of fusion of heavy nucleus with even Z is less than another nucleus)
- Which 2 elements (besides H \& He) exhibit prominent +ve anomalies with respect to their abundance in the solar system? \& Explain why these elements have unusually high abundances
> Fe : one of the most stable nuclei (has high binding E) \& can't be further diffused in a stars
> Pb : formed by decay of unstable radioactive U \& during supernova stage (has 2 sources)
- Why do successive steps in the alpha addition process, which forms nuclei from ${ }^{12} \mathrm{C}$ through ${ }^{56} \mathrm{Fe}$, require greater T-P? Alpha are +ve particle, \& the + ve charge increases from ${ }^{12} \mathrm{C}$ to 56 Fe , so higher $\mathrm{T}-\mathrm{P}$ are needed to overcome the repulsion forces
- What element is formed during the main sequence stage of stellar evolution? Helium (He) only
- List the following elements in the order you would expect to find them in a massive second-generation star from the core to the outside: $\mathrm{He}, \mathrm{Si}, \mathrm{H}, \mathrm{O}, \& \mathrm{Fe}$
> $\mathrm{Fe}, \mathrm{Si}, \mathrm{O}, \mathrm{He}, \mathrm{H}$ (relative to decreases T-P from the core to the outside of the star)
- Check for the abundance of Ar in table 2.1 in textbook \& see whether it is greater than expected. If so, suggested an explanation for that! 1.04×10^{5} atom/106Si, enhanced by the decay of the long lived radioactive isotopes (K), \& Ar is formed also during red giant stages in a stars, the 3rd reason that Ar is noble gass so very stable against decay
- How has the abundance of H in the universe changed since the Big Bang? Produced after BigBang \& then decreases in the formation of He by nuclear fusion in the main sequence stars (decreases with time)
- Why do technetium (Tc) \& promethium (Pm) lack stable isotopes? Because of their half-life is very short (seconds to years), unstable in most known conditions, \& decay rapidly by n -capture
- List all other elements lack stable isotopes The elements with $\mathrm{Z} \boldsymbol{>} 83$ ($\mathrm{Pu}, \mathrm{Cm}, \mathrm{Na}, \mathrm{Pa}, \mathrm{Am}, \mathrm{Ra}, \mathrm{Bk}, \mathrm{Cf}$, Po, Ac, Es, Fm, Md, Rn, Db)
- How did lithium (Li), beryllium (Be), \& boron (B) form? When you smash a high-energy particle into a massive nucleus, the large nucleus splits apart into a variety of component particles. This process (spallation) explain how $\mathrm{Li}, \mathrm{Be}, \& \mathrm{~B}$ form
- Any of the following elements formed in the stars? (Ar, Pb, U, Ti)? Ar (other formed during supernova)

Chapłer Two
 The Solar System

جميع كواكب المجموعة الثمسية تكونوا على نفس المستوى مـا يدل على ان لُهم نفس المصدر، وجميعها تدور بنفس الاتجاه حول الثنمس، وحول نفسـها (باستثنـاء الزهرة)،

والكو اكب القريبة عن الثنمس صخريـة والبيدية غازيـة

- The Sun formed from a cloud of dust \& gas, as with all other stars of the MilkyWay \& in the universe
- In the case of the Sun a very small fraction of the cloud accreted to form a set of 9 planets
- Diffuse mass of gas \& dust (nebula) 6Ga from explosions of ancestral stars (Supernovae)
- elements formed in these stars were added to H \& He (originated from Big Bang)
- why all planets rotating in the same direction? The nebula was rotating in the same sense of the Milky way (this explain)
- why all planets on same level? The nebula acted upon by gravitational, magnetic, \& electrical forces led to Contraction of the rotating desk

$\mathrm{H}, \mathrm{He}: \quad \sim 99 \%$ of all atoms

of the remaining $\sim 1 \% \ldots$

oxygen (\mathbf{O})	55%
carbon (\mathbf{C})	23
nitrogen (\mathbf{N})	7
neon $(\mathbf{N e})$	8
magnesium (Mg)	2.5
silicon (Si)	2.3
iron $(\mathbf{F e})$	2.1
sulfur (\mathbf{S})	1.2
aluminum $(\mathbf{A l})$	0.2
calcium $(\mathbf{C a})$	0.14
sodium $(\mathbf{N a})$	0.14
nickel $(\mathbf{N i})$	0.11

Chemistry of a solar system volatile

Gases of from gaseous compound

refractory ${ }_{\text {tend }}$

to form solid at any T
volatile under some conditions (such as high T)

- T-P gradients increase in the rate of rotation: Certain solid particles could not survive T in the center of the nebula \& evaporated, only the most refractory particles like Ni-Fe alloys, $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CaO}$ survived, \& In the outer part larger number of particles remained in the solid state
- Why the planets closer to the sun are terrestrial \& those further from the sun are Jovian planets? Increased rate of rotation results in the formation of a protosun in the central disk
- Why the Jovian planets consist of gas compound such as $\mathrm{CH}_{3} \& \mathrm{NH}_{3}$ in a solid state? duo to low T
- The T increased to 2000 K at the center to about 40 K at approximately 7.5 GKm. form the protosun
- The P ranged from < 0.1 atm to about 10^{-7} atm near the edge of the disk

Top view of proto solar system

"edge-on" view

- Compounds with low vapor P formed dust particles \& persisted throughout the nebula \& those with high vapor P could exist in the outer cooler regions
- The condensates accreted to form larger bodies due to adhesion caused by electrostatic \& magnetic forces (planetesimals $10 \mathrm{~m}->1000 \mathrm{~km}$)
- Those close to protosun consisted of refractory minerals, farther away Fe-Mg silicates, farther out ice, ammonia, methane, \& other volatiles

T	Conditions \& Reactions
1600	Refractory oxides $\left(\mathrm{CaO}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{TiO}_{2}\right)$, \& rare e
1300	$\mathrm{Metallic} \mathrm{Fe}, \mathrm{Ni} \mathbf{1 2 0 0}$
MgSiO_{3}	

| 1200 | Fe react with O to form (Fe,Mg) ${ }_{2} \mathrm{SiO}_{4}$ |
| :--- | :--- | :--- |
| 500 | |
| 1000 | Alkali metals (alminosilicate): |
| $\mathrm{Na}+\mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow$ Alkali-feldspar | |
| 675 | $\mathrm{H}_{2} \mathrm{~S}+\mathrm{Fe} \rightarrow \mathrm{FeS}+2 \mathrm{H}^{+}$ |
| $550-425$ | $\mathrm{H}_{2} \mathrm{O}+$ Silicates \rightarrow Hydrous silicates |
| 170 | $\mathrm{H}_{2} \mathrm{O}$ condenses to water ice |
| 150 | $\mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}_{(s)}$ |
| 125 | $\mathrm{CH}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{CH}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ |

- The sun needed 100,000 to reach T for H burning

Superluminous Initial luminosity was 2-3times greater phase (ath than main sequence stars, Energy was

اضاءة عالبة جبد)

T-Taure stage

Main
sequence inherited from the initial contraction, \& lasted for about 10 Ma
25% of sun mass exploded as solar wind of proton/electron plasma هذه الرياح ازاحت الغلاف الجوي القديم للكواكب القريبة من

After T-Taure stage the sun entered the main sequence, In the inner part of disk planetesmals accreted to form the terrestrial planets \& the asteriods \& Instabilities in the outer part of the disk gave rise to the Jovian planets

- Terrestrial planets: Mercury, Venus, Earth, \& Mars
- Asteriods: parent material of the meteorites
- Jovian planets: Jupiter, Saturn, Uranus, Neptune
- The origin \& chemical composition of Pluto aren' \dagger known, distance is not consistent with Titius-Bode
- Titius-Bode law: governs distances of the planets to sun expressed as AU, $[(0,3,6,12,24)+4] / 10$ $=(0.4,0.7,1,1.6,2.8)$ resulting numbers match well with the distances of the planets to the sun with some discrepancies one of which is that of Pluto

$\mathrm{Mg}-\mathrm{Fe}$ silicate
Fe or $\mathrm{Fe}+\mathrm{FeS}$ (some Ni)
The magnetic field is caused by a liquid core

- The total mass of the solar system is about $2.052 \times 10^{33} \mathrm{~g}, 99.87 \%$ of which in the sun \& 0.13% for the 9 planets 171% in Jupiter, 0.0006% of the total mass in terrestrial planets \& moon)
- Earth: covered by 71% water \& have developed life
- The earth-like planets were first molten because of heat generated by capturing of hot planetismals \& radioactive heating
- The last phase of their formation was the capturing of planetismals composed of volatiles called cometismals, \& These deposited solids of water, methane \& ammonia on the surface of the planets
- The water \& other volatiles evaporated to form the atmosphere from which water ultimately condensed as the surface of the Earth cooled
- Mercury \& the moon do not have atmosphere since they were too small to retain the gases
- Mars \& the moon cooled sufficiently shortly after their formation \& became geologically inactive while Earth \& Venus being the largest are active
- Mars, being intermediate in size has volcanic activity not too distant in the geologic past
- Venus has a CO_{2} atm so it became hot \& dry while the earth cooled rapidly allowing oceans to form > 4Ga by condensation of water vapor in atmosphere
- The formation of hydrosphere (oceans) permitted geological processes to operate \& the lead to the development of life
- Terrestrial planet hadn'† He, H forming atm, since both elements had been expelled from the inner regions during the T-Taure stage of the sun
- Earth accretion models:

1. Homogeneous model: initially assembled from silicate \& Fe (uniformly mixed), \& heat-up cause catastrophic differentiation by core infall
2. Heterogenouse model: Earth assembled in stepwise fashion (core, then silicate mantle)

Chopter Three Earth's Chemical Difierentiation

EARTH'S SPHERES \& DIFFERENTIATION

- Differentiation: separation of the Earth into shells of different compositions
- The Earth is a highly differentiated planet (Evidence of that is the existence of layers)
- Differentiation caused by active geological processes which leading to further diversity in its shells \& their constituent rocks.

- Depending on chemical or mineralogical composition: Crust, Mantel, \& Core
- Depending on physical properties

Lithosphere	Crust \& upper mantle, solid
Moho boundary	between crust \& mantle, 100km
Asthenosphere	consist of fluids
Gutenberg	between mantel \& core, 2890 km
Outer core	Liquid
Inner core	Solid

Seismic V variations with depth: Region with high anomalies (where S-wave disappeared \& P-wave V dropped) indicate the boundaries between different layers \& zones

	Thickness $[\mathrm{km}]$	Volume $\left[10^{27} \mathrm{~cm}^{3}\right]$	Density $\left[\mathrm{co} / \mathrm{cm}^{3}\right]$	Mass $\left[10^{27} \mathrm{~g}\right]$	Mass\%
Earth	6371	1.083	5.52	5.976	100%
Core	3471	0.175	10.7	1.876	31.5%
Manile	2883	0.899	4.5	4.075	68.1%
Crust	40	0.00824	2.8	0.0236	0.4%
Hydrosphere	3.8	0.00137	1.03	0.0014	0.024%
Atmosphere	-	-	-	5×10^{-6}	9×10^{-5}

Most of the earth's mass is in mantle
The denser layer is core, \& the Avg. ρ of surface is $2.8 \mathrm{~g} / \mathrm{cm}^{3}$
The thickest layer in core \& thinner is crust

CHEMICAL COMPOSITION OF THE MANTLE

	Sample ${ }^{\text {a }}$	Sample ${ }^{\text {b }}$	Sample ${ }^{\text {c }}$
SiO_{2}	45.2	48.1	45.0
MgO	37.5	31.1	39.0
FeO	8.0	12.7	8.0
$\mathrm{Al}_{2} \mathrm{O}_{3}$	3.5	3.1	3.5
CaO	3.1	2.3	3.25
$\mathrm{Na}_{2} \mathrm{O}$	0.57	1.1	0.28
$\mathrm{Cr}_{2} \mathrm{O}_{3}$	0.43	0.55	0.41
MnO	0.14	0.42	0.11
$\mathrm{P}_{2} \mathrm{O}_{5}$	0.06	0.34	-
$\mathrm{K}_{2} \mathrm{O}$	0.13	0.12	0.04
TiO_{2}	0.17	0.12	0.09
NiO	-	-	0.25
Sum	98.8	99.95	99.93

Pyrolite (hypothetical)
$=3$ peridotite +1 basalt

Xenoliths brought to
the mantle indicate:
pyroxene, olivine,
Spinel, amphibole, garnet
${ }^{\text {apyrolite (}}$ (ingwood, 1966).
${ }^{6}$ Mantle plus crust based on meteorites (Mason, 1966).
${ }^{\text {}}$ Undepleted mantle based on therzolites (Hutchison, 1974).
Meteorites: less differentiated

Ultramafic rocks
Found in upper mantle

CHEMICAL COMPOSITION OF THE CONTINENTAL CRUST

- Continental crust include atmosphere, hydrosphere, biosphere, \& part of the lithosphere \& consists of 2 principal parts: oceanic \& continental

Crust	Consist of
Oceanic	Basalt with a thin layer of sediments
Continental	95% igneous \& metamorphic rocks 5%

	Poldervaart				Ronov and Yaroshevsky
	1 Continental shields'	2 Young folded belts ${ }^{\text {b }}$	Suboceanic regions		
SiO_{2}	59.8	58.4	49.4	46.6	49.4
TiO_{2}	1.2	1.1	1.9	2.9	1.4
$\mathrm{Al}_{2} \mathrm{O}_{3}$	15.5	15.6	15.1	15.0	15.4
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	2.1	2.8	3.4	3.8	2.7
FeO	5.1	4.8	6.4	8.0	7.6
MnO	0.1	0.2	0.2	0.2	0.3
MgO	4.1	4.3	6.2	7.8	7.6
CaO	6.4	7.2	13.2	11.9	12.5
$\mathrm{Na}_{2} \mathrm{O}$	3.1	3.1	2.5	2.5	2.6
$\mathrm{K}_{2} \mathrm{O}$	2.4	2.2	1.3	1.0	0.3
$\mathrm{P}_{2} \mathrm{O}_{5}$	0.2	0.3	0.3	0.3	0.2

Chemical composition of 4 major structural unit of lithic crust in Wt\%
Shields: all rock from Precambrian (older then 550Ma)
Mobil belts: rocks that formed after Cambrian (younger 550Ma)

- Different estimates for the composition of the crust:

1. averaging large number of chemical analyses
2. combining chemical analyses of different rock types weighted by their abundances
3. analyzing sediments derived from continents
4. combining compositions of acidic \& mafic rocks
5. modeling (mathmatical)

	r^{*}	$2^{\text {b }}$	3	4	$5{ }^{*}$	6	7	$8^{\text {b }}$
SiO_{2}	59.12	59.07	59.19	60.06	59.4	59.3	57.3	68.4
TiO_{2}	1.05	1.03	0.79	0.90	1.2	0.7	0.9	\% 0.4
$\mathrm{Al}_{2} \mathrm{O}_{3}$	15.34	15.22	15.82	15.52	15.6	15.0	15.9	$\underset{\sim}{\text { c }} 14.8$
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	3.08	3.10	3.41	3.55	2.3	2.4	-	$\stackrel{\text { co }}{\text { c }} 1.3$
FeO	3.80	3.71	3.58	4.06	5.0	5.6	9.1	$\stackrel{\text { ᄃ }}{6} 3.2$
MnO	0.12	0.11	0.11	0.21	0.1	0.1	-	U
MgO	3.49	3.45	3.30	3.56	4.2	4.9	5.3	$\sum 1.7$
CaO	5.08	5.10	3.07	5.62	6.6	7.2	7.4	¢ 3.4
$\mathrm{Na}_{2} \mathrm{O}$	3.84	3.71	2.05	3.28	3.1	2.5	3.1	흑 3.1
$\mathrm{K}_{2} \mathrm{O}$	3.13	3.11	3.93	2.88	2.3	2.1	1.1	त 3.6
$\mathrm{P}_{2} \mathrm{O}_{5}$	0.30	0.30	0.22	0.36	0.2	0.2	-	0.1
CO_{2}	-	0.35	0.54	-	-	-	-	-
$\mathrm{H}_{2} \mathrm{O}$	1.15	1.30	3.02	-	-	-	-	-

Average composition of continental crust in Wt\%
$1^{\text {st }}$ Clarke \& Washington: analysis of igneous from all continents $2^{\text {nd }}$ Clarke \& Washington: 95% ig $+4 \%$ shale +0.75 Ss $+0.25 \%$ Ls 3rd Goldschmidt: based on 77 analyses of glacial clay $4^{\text {th }}$ Daly: based on 1:1 mixture of average granite and basalt $5^{\text {th }}$ Polderwart: average folded belts \& continental shield regions

- The composition of the continental crust is completely different from that of the solar nebula or the stony meteorites

Elemental Abundances in Earth's Crust		
Elements	Whole crust	Continental crust
Oxygen (O)	46%	45.5%
Silicon (Si)	28%	26.8%
Aluminum (Al)	8%	8.4%
Iron (Fe)	6%	7.06%
Magnesium(Mg)	4%	3.2%
Calcium (Ca)	2.4%	5.3%
Potassium (K)	2.3%	0.9%
Sodium (Na)	2.1%	2.3%
Total	98.8%	99.46

Other element present in traces [expressed in ppm, ppb]

DIFFERENTIATION OF IGNEOUS \& SEDIMENTARY ROCKS

- The composition of the igneous rocks is highly variable due to geochemical differentiation that takes place during their formation
- The differentiation starts from the time of igneous rocks formation by partial melting of upper mantle or lower crustal rocks
- The composition of the melt depends on the composition of the source \& extent of the melt which is a function of P-T
- The composition of the magma may be modified later on by: Assimilation of rocks (partially melting of magma chamber), Mixing with other magmas, Fractional crystallization, \& Liquid immicibility
- Sedimentary rocks highly diversified like igneous by: Weathering, Transport, Deposition, \& Lithification

Element, Z	Ultramafic'	Basalt	Hight-Ca granites'	$\begin{aligned} & \text { Low-Ca } \\ & \text { granites } \end{aligned}$	Shale ${ }^{\text {s }}$	Sandstone	Carbonate rocks ${ }^{\circ}$	Deep-sea clay"	
3 Li	0.5	16	24	40	66	15	5	57	A partial
4 Be	0.2	0.7	2	3	3	-	-	2.6	chemical
5 B	2	5	9	10	100	35	20	230	chemical
9 F	100	385	520	850	740	270	330	1300	composition
$11 \mathrm{Na}(\%)$	0.49	1.87	2.84	2.58	0.9	0.33	0.04	4	
$12 \mathrm{Mg}(\%)$	23.2	4.55	0.94	0.16	1.50	0.70	4.70	2.10	
13 Al (\%)	1.2	8.28	8.20	7.20	8	2.50	0.42	8.40	
$14 \mathrm{Si}(\%)$	19.8	23.5	31.40	34.70	7.30°	36.80	2.40	25	dimentary
15 P	195	1130	920	600	700	170	400	1500	mentary
16 S	200	300	300	300	2400	240	1200	1300	rocks (in ppm
17 Cl	45	55	130	200	180	10	150	21000	which equ
$19 \mathrm{~K}(\%)$	0.017	0.83	2.52	4.20	2.66	1.07	0.27	2.50	
$20 \mathrm{Ca}(\%)$	1.6	7.2	2.53	0.51	2.21	3.91	30.23	2.90	to mg/L)
21 sc	10	27	14	1	13	1	1	19	
22 Ti	300	11400	3400	1200	4600	1500	400	4600	
23 V	40	225	88	44	130	20	20	120	

Hydrosphere

Differentiation of the hydrosphere Evaporation (by heat from the sun) \rightarrow Condensation \rightarrow Precipitation

Reservoir	Volume $10 . \mathrm{km}^{3}$	Vol\%
Ocean	1370	97.25\%
Ice (glaciers)	29	2.05\%
Groundwater	9.5	0.68\%
Lakes	0.125	0.01\%
Soil moisture	0.065	0.005\%
Atmosphere	0.013	0.001\%
Rivers	0.0017	0.0001\%
Biosphere	0.0006	0.00004\%
Total	1408.7	100\%

Inventory of water in the hydrosphere

When water come in contact with rocks different types of chemical weatherin or water rock interactions

SUSCEPTIBILITY OF MINERALS TO WEATHERING

- The susceptibility of minerals to weathering is different (opposite to Bowen's reaction series), so the elements in the rocks don't enter into aqueous medium in the same proportions as in rocks
- The chemical elements become subjected to a variety of processes when they enter hydrosphere:

1. Some selectively absorbed on charged surfaces of clay minerals or oxides \& hydroxides
2. Others enter the biosphere as nutrients \& associated with organism \& biogenic carbon
3. Noble gases are released into the atmosphere

Element	Classification ${ }^{\text {a }}$	Stream water	Seawater	Seawater enrichment	(, MORT',
Li	I	3×10^{-3}	1.7×10^{-1}	56.7	2.5×10^{6}
Be	IV	1×10^{-5}	2×10^{-7}	0.02	6.3×10^{1}
B	I	1×10^{-2}	4.5	450	1.6×10^{7}
F	I	1×10^{-3}	1.3	1300	7.9×10^{5}
${ }^{\mathrm{Na}}$	I	$\left.\begin{array}{ll} \boldsymbol{\lambda} & 6.3 \\ \underset{y}{c} & 4.1 \end{array}\right\rangle$	1.08×10^{4}	1714	2.0×10^{8}
Mg	,		1.29×10^{3}	315	5.0×10^{7}
Al	IV		8×10^{-4}	0.016	7.0
Si	II	6.5	2.8	0.43	7.9×10^{3}
P	II ${ }^{0}$	2×10^{-2}	7.1×10^{-2}	3.6	4.0×10^{4}
S	18	3.7	9.0×10^{2}	243	5.0×10^{8}
$\boldsymbol{\sim}$	$1{ }^{1}$	7.8	1.95×10^{4}	2500	6.3×10^{8}
$\boldsymbol{\sim}$	1	2.3	3.99×10^{2}	173	1.3×10^{7}
$\boldsymbol{C a}$	1	15	4.13×10^{2}	27.5	1.3×10^{6}

Se	III	6×10^{-3}	1.3×10^{-9}	2.2	0.5×10
Br	I	2×10^{-2}	6.7×10^{1}	3350	7.9×10^{8}
Rb	I	1×10^{-3}	1.2×10^{-1}	120	7.9×10^{5}
Sr	I	7×10^{-2}	7.6	109	5.0×10^{6}
Y	III	4×10^{-5}	7×10^{-6}	0.18	1.3×10^{2}
Zr	IV	-	3×10^{-5}	-	1.6×10^{2}
Nb	IV	-	$<5 \times 10^{-6}$	-	$<2.5 \times 10^{2}$

Average composition of water in stream \& ocean ($\mu \mathrm{g} / \mathrm{g}$)

I = conservative \& constant concentration throughout the ocean II= non-conservative, concentration changes vertically \&
horizontally
III = non-conservative but the concentration changes irregularly IV = unclassified but probably nonconservative
MORT = Main Oceanic Residence Time [in years] (فترة المكوث)
بعض العناصر لا تمكث كثير الانه يتم استهاكهها مثل Si, P بحزيئات ال clay والني تترسب على قاع المحيط لذا فتركيز ها فليل

$t=A_{x} /(d x / d t)=$ Eamount of element/Avg. annual input of that element

Seawater Enrichment $=[\mathrm{X}]_{\text {seawater }} /[\mathrm{X}]_{\text {streamwater }}$
من المتترض ان تركيز بعض العناصر (Si, P) يكون اكبر بالمحيطات من تركيزه في الانهار لان النهر
 يزداد تركيز الصوديوم بالمحيطات (يزيد الملوحة) لان املاحه ذائبيتها عالية لذا فييقى بشكله الايوني

- The chemical composition of the water affected by rocks composition \& geochemical environment
- Geochemical environment determined by :climate, topography, \& vegetation

Average enrichment factors	
Alkali metals	$416(14.5-1,714)$
 Ba)	$151(27.5-315)$
Halogens	$1,790(8-3,350)$

Percentages of chemical elements in the earth		
Element	W+\%	
Iron Fe	36.0\%	Whole Earth The iron is most common element in the earth, then Oxygen, \& then Silicon
Oxygen 0	28.7\%	
Silicon Si	14.8\%	
Magnesium Mg	13.6\%	
Nickel Ni	02.0\%	
Calcium Ca	01.7\%	
Sulfur S	01.7\%	
Aluminum Al	01.3\%	
Chromium Cr	00.5\%	
Phosphorus P	00.2\%	
Cobalt Co	00.1\%	
Oxygen 0	46.6\%	Earth's Crust
Silicon Si	27.7\%	
Aluminum Al	08.1\%	
Iron Fe	05.0\%	
Calcium Ca	03.6\%	
Sodium Na	02.8\%	
Potassium K	02.6\%	
Magnesium	02.1	
Mg		

Chapter Four

Electronic Structure, Periodic Table, \& Chemical Bonding

ELECTRONIC STRUCTURE OF ATOMS

- The electrons are concentrated at various specific distances from the nucleus in the form of orbitals that can be thought of as volumes of space in which the electrons are most likely to occur

Shells (principal quantum number)
Electrons in specific orbital has a specific energy state, max number of shells around nucleus is $7(K, L, M, N, O, P, \& Q)$ \& every one has maximum capacity of electrons ($K=2, L=8 \ldots$)
Sub-shells: $(s),(s, p),(s, p, d), \&(s, p, d, f)$

Electronic transition	Characteristic \mathbf{X}-ray
\mathbf{L} to \mathbf{K}	K-a (alpha)
\mathbf{M} to \mathbf{K}	K- β (beta)
\mathbf{N} to K	K-Y (gamma)
\mathbf{O} to \mathbf{K}	K- Δ (delta)

- The diffraction (XRD) is based on the diffraction of x rays by the crystal lattice, X-ray fluorescence is based on the characteristic x-rays by the elements

- The Aufbau Principle (building up principle): electrons are put into orbitals in order of increasing subshell energy
- a maximum of 2 electrons can occupy the same orbital \& must spin in opposite directions

Examples: Z(C =6, Si=14, \& Ge=32)

- $C=1 s^{2} 2 s^{2} 2 p^{2}$
- $\mathrm{Si}=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}=[\mathrm{Ne}] 3 s^{2} 3 p^{2}$
- $G e=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{2}=[A r] 4 s^{2} 3 d^{104} 4 p^{2}$

THE PERIODIC TABLE

- Period Horizontal arrangement have same physical properties, Groups vertical arrangement have same chemical properties \& mostly same charge
- The element in the periodic table can be divided into 2 group passed on physical properties: Matals \& Non-Metals
- Every groups in a periodic table have same chemical properties \& charge

Metals (bellow) \& Non-Metals (above)
Non metals properties increases from left to right in the periodic table
Metals: tend to loss e^{-}to form cations Non-Metals: tend to gain e^{-}to form anions

S لجمو عات ا,2 نتّيهيان ب S-subshells لذا تسمى Slock d-subshells ينتهي في transition metals ال p-subshells الدجمو عات من A 7-3 تنهو في في

- High volatile: always in gaseous state (H, C, N, Nobel gases..)
- Moderately volatile: It tends to be in the gaseous state under moderately to high T ($\mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}, \mathrm{O}$, F,...)
- Refractory: always in solid state (have high Boiling point), alkali earthy elements, most transition elements, Al, \& Si...
- Siderophile: mostly attached to sulfur \& have properties same as iron (Mn, Mo, Pd...)
- Radioactive elements: unstable isotopes (such as U)

- Anions have more ionic radii than cations because they grains electrons مثلا F يحتوي 7e بالمدار الاخير اذا اكتسب الكترون يصبح 8e فتّزداد قوى التنافر

بين الاكترونات في المدار الاخير فيزداد حجم الايون

ISOTOPES

- Isotopes: atoms of the same element (Z) with different mass number (atomic mass A), have same number of protons but different number of neutrons
- Atomic number Z : is a number of protons
- Mass number or atomic mass A : is a number of protons + number of neutrons

- Isotopes can be subdivided into 2 groups:

1. Stable isotopes: Don't decay (${ }^{16} \mathrm{O},{ }^{12} \mathrm{C}$..)
2. Unstable isotopes: Decayed with time to reach equilibrium state such as ($U \rightarrow \mathrm{~Pb}$)

- Most elements have ≥ 2 stable isotopes
- Some have long-lived radioactive isotopes
- large group of short-lived radio isotopes does occurs in nature
- Isotopes of elements are found in nature with different abundances

- Hhalf-life: time required to decay 50% an isotopes
- Atomic weight: is a sum of a masses of its naturally occurring isotopes weighted in their abundance
For example Si has 3 naturally occurring isotopes \& the atomic weight is found by multiplying the masses of isotopes by their abundance expressed as decimal fraction \& adding the result product:

Isotopes	Abundance	Mass (amu)	A $^{*} \mathrm{~m}$ (amu)
${ }^{28}{ }_{14} \mathrm{Si}$	92.23%	27.976927	25.80312
${ }^{29}{ }_{14} \mathrm{Si}$	4.67%	28.976495	1.35320
${ }^{30}{ }_{14} \mathrm{Si}$	3.10	29.973770	0.92918

Atomic weight (or atomic mass) $=$ sum of $\mathrm{A}^{*} \mathrm{~m}=$ $25.80312+1.35320+0.92918=28.0855 \approx 28 \mathrm{amu}$

- In the periodic table atomic mass (Atomic weight) calculating in this way for all elements
- $\quad 1 \mathrm{amu}={ }^{12} \mathrm{C} / 12$

SOLUBILITY \& NUMBER OF MOLES

- Mole (mol): a number of atoms or molecules (known as Avogadro's number $=6.022045 \times 10^{23}$ atoms)

1. The gram-atomic weight of an element is equal to its atomic weight in grams
2. The gram-molecular weight for a compound is the molecular weight in grams

- Number of $\mathbf{m o l}=$ mass/molar mass $(n=m / M W)$
- Gram Formula Weight (GFW): weight of 1 mol
- Solubility $\mathrm{S}=\mathrm{n} / 100 \mathrm{~mL}=\mathrm{g} / 100 \mathrm{~mL}$

Example :

$2 \mathrm{H}_{2}+\mathrm{O}_{2}=2 \mathrm{H}_{2} \mathrm{O}$
2 mole +1 mole $=2$ moles
$12.04 \times 10^{23} \mathrm{H}$ atoms $+6.02 \times 10^{23} \mathrm{O}_{\text {atoms }}=6.02 \times 10^{23} \mathrm{H}_{2} \mathrm{O}$ atoms $2 \mathrm{~g}+1 \mathrm{~g} \neq 2 \mathrm{grams}$

Example : Barite BaSO_{4}, \& Solubility in cold water $=$ $2.22 \times 10^{-4} \mathrm{~g} / 100 \mathrm{~mL}(\mathrm{Ba}=137.0, \mathrm{~S}=32.1, \mathrm{O}=16.0)$

1. Calculate GFW in gram (GFW $=\mathbf{\Sigma} \mathbf{n} * \mathbf{M w}$)
2. Calculate solubility in $\mathrm{mol} / \mathrm{L}(\mathrm{n}=\mathrm{m} / \mathrm{Mw})$
3. Calculate \# of barite ions in 1 L solution (\mathbf{n} * $\mathbf{A v}$)

Solutions

1. $\mathbf{G F W}=\left(\mathrm{n}^{*} M W\right)_{B a}+\left(\mathrm{n}^{*} M W\right)_{\mathrm{s}}+\left(\mathrm{n}^{*} M W\right)_{O}=\left(1^{*} 137\right)+$ $(1 * 32.1)+\left(4^{*} 16\right)=233.1 \mathrm{~g} / \mathrm{mol}$
2. $S=2.22 \times 10^{-4} \mathrm{~mol} / 23.31 \mathrm{~L}=9.52 \times 10^{-6} \mathrm{~mol} / \mathrm{L}$
3. $\mathrm{BaSO}_{4} \rightarrow \mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-}\left(\mathrm{nBaSO}_{4}=\mathrm{n} \mathrm{SO}_{4}{ }^{2-}=\mathrm{nBa}^{2+}\right)$ $\mathrm{n}_{\mathrm{Ba}^{2+}}=9.52 \times 10^{-6 *} 6.02 \times 10^{23}=5.73 \times 10^{18} / \mathrm{Ons} / \mathrm{L}$
Example How many moles of Na^{+}are present in one liter of an aqueos solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ containing 4.760 g of the compound (Mw: $\mathrm{Na}=23.0, \mathrm{~S}=32.1, \mathrm{O}=16.0$)

Solution

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{Na}^{+}+1 \mathrm{SO}_{4}^{-2}\left(\mathrm{n}_{\mathrm{Na}_{2} \mathrm{SO}_{4}}=2 \mathrm{n}_{\mathrm{Na}^{+}}={\mathrm{n} \mathrm{O}_{4}}_{-{ }^{-2}}\right) \\
& \mathrm{MWNa}_{\mathrm{Na}_{2} \mathrm{SO}_{4}}=\Sigma \mathrm{MW}=142.1 \mathrm{~g} / \mathrm{mol} \\
& \mathrm{n}_{\mathrm{Na}_{2} \mathrm{SO}_{4}}=\mathrm{m} / \mathrm{MW}=4.760 / 142.1=0.0335 \mathrm{~mol} \\
& \mathrm{nNa}_{2} \mathrm{SO}_{4}=2 \mathrm{nNa}^{+}=2 * 0.0335 \mathrm{~mol}=0.0670 \mathrm{~mol}
\end{aligned}
$$

CHEMICAL BONDS, IONIC RADII, \&CRYSTALS

- The physical \& chemical properties of the elements vary with increasing Z according to the periodic law
- elements divided into 2 major groups according to tendency to give or attract electrons: on the left side of periodic table are electron donors (metals) \& on the right are electron acceptors (non-metals)
- cation: +ve charged ions, formed by e-donor atoms
- anions: -ve charge, formed by e-acceptor atoms
- Ionic bond: Formed by electrostatic force between ions of opposite charge (Metals Cation, +ve + NonMetals Anion, -ve)
- Most minerals are compounds of cations \& anions held together by ionic bond (e.g. Halite)
- Covalent bond: sharing of electron among element
- Formed due to difference in electronegativity X
- Formed when 2 elements of similar metallic or nonmetallic character interact
- electrons shared instead of transferred
- The elements share electrons unequally so covalent bonds tend to have ionic character
- The transfer of e- on opposite sides of the periodic table is never $\mathbf{1 0 0 \%}$, so ionic bond have a covalent character (amount is a function of the difference in the tendency of the atoms to attracts electrons)
- Truly covalent bonds occur when atoms of same element combine to form molecule (e.g. $\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2}$)
- Parameters to quantify or predict type of bonding

1. First ionization potential energy: remove one electron from a neutral atom in a vacuum \& to place at rest an infinite distance away

First ionization potential
Metals has higher First Ionization Energy than Non-Metals
So metals loss their electrons faster than Non-Metals
2. Electronegativity: measure of the ability of an atom in a molecule to attract electrons to itself

Atomic Number (Z)

Electronegativity (x or $\delta-$)

Non-Metals have higher electronegativity then metals
(have more affinity to gains electrons)
3. Standard electrode potential: voltage generated when mole of electrons is removed from mole of element "in the standard state"

Covalent character for oxides (FO, CIO..)

Variation of covalent bond character of single bonds with oxygen based on electronegativity differences
For example: Lithium oxide has 20% Covalent $+80 \%$ ionic

Percentage of ionic character of single bonds with O			
$\Delta \mathrm{X}$	Ionic character \%	$\Delta \mathrm{X}$	lonic character \%
0.1	00.5\%	1.7	51.0\%
0.2	01.0\%	1.8	55.0\%
0.3	02.0\%	1.9	59.0\%
0.4	04.0\%	2.0	63.0\%
0.5	06.0\%	2.1	67.0\%
0.6	09.0\%	2.2	70.0\%
0.7	12.0\%	2.3	74.0\%
0.8	15.0\%	2.4	76.0\%
0.9	19.0\%	2.5	79.0\%
1.0	22.0\%	2.6	82.0\%
1.1	26.0\%	2.7	84.0\%
1.2	30.0\%	2.8	86.0\%
1.3	34.0\%	2.9	88.0\%
1.4	39.0\%	3.0	89.0\%
1.5	43.0\%	3.1	91.0\%
1.6	47.0\%	3.2	92.0\%

Examples
$\mathrm{H}_{2}=\mathrm{xH}-\mathrm{xH}=2.1-2.1=0 \rightarrow 100 \%$ covalent $\mathrm{ZnS}=x S-x \mathrm{Zn}=2.5-1.6=0.9 \rightarrow 19 \%$ ionic $\mathrm{CCl}_{4}=x \mathrm{Cl}-x \mathrm{C}=3.0-2.5=0.5 \rightarrow 6 \%$ ionic $\mathrm{H}_{2} \mathrm{O}=x \mathrm{O}-\mathrm{xH}=3.5-2.1=1.4 \rightarrow 39 \%$ ionic $\mathrm{CaF}=\mathrm{xF}-\mathrm{xCa}=4.0-1.0=3.0 \rightarrow 89 \%$ ionic $\mathrm{KCl}=\mathrm{xCl}-\mathrm{xK}=3.0-2.2=0.8 \rightarrow 15 \%$ ionic

- Importance of bonding: All physical \& chemical properties depend on the character of the bonds
- Chemical properties: lonic bond have high aqueous solubility (solubility of a compound increases with increasing ionic character)
- Physical properties:
I. Isotropic: Ionic bond tend to be isotropic, \& covalent bond tend to be anisotropic
II. Resistance to weathering: minerals with ionic bond are less resistance (such as Ol)
Example: calcite dissolved in water as $\left(\mathrm{CaCO}_{3} \rightarrow \mathrm{Ca}^{2+}+\right.$ $\left.\mathrm{CO}_{3}{ }^{2^{-}}\right)$\& doesn't give rise as $\left(\mathrm{CaCO}_{3} \rightarrow \mathrm{Ca}^{2+}+\mathrm{C}^{4+}+\right.$ $3 \mathrm{O}^{2-}$) because $\mathrm{C}-\mathrm{O}$ are covalent (less aqueous solubility) while the $\mathrm{Ca}-\mathrm{CO}_{3}$ are ionic (high solubility)
- Solubility of ionic bonding crystals in water are related to polarity of water molecules (unequal sharing of electrons due to Δx between O \& H)
- O attract e- of H \& this unequal sharing results in polarity (-ve charge on O \& +ve on H) so water attracted to charges on surface of ionic crystal \& have no effect on the covalent crystals
- The ions that form by dissociation attract water to themselves \& become hydrated
- The number of water molecules attached to an ion depend on its size \& charge

Examples

$\mathrm{Be}^{2+}\left(\mathrm{r}=0.35 \mathrm{~A}^{\circ}\right)+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Be}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}{ }^{2+}$ (hydrated) $\mathrm{Al}^{3+}\left(\mathrm{r}=0.51 \mathrm{~A}^{\circ}\right)+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$ (hydrated)

- the water is able to dissolved compounds having ionic bonding \& not effective in covalent bond

IONIC CRYSTALS \& COORDINATION NUMBER

- All minerals are crystalline substance which means all have regular crystal structure
- When ions come together to form crystals, they satisfy the electrostatic requirement dictated the electrostatic bond (F) that is given by coulomb law

$$
F=\frac{e 1 x e 2}{r^{2}}
$$

- Coordination number: is the number of anions that surrounded cation
- Coordination number controled by the size of cation \& anion (radius ratio of cation/anion)

Coordination and coordination numbers

The size of the anions determines the size of the cation that can occupy the site created by
 the anions!

Radius ratio (RR)	CN	Arrangement
<0.155	2	Linear
$0.155-0.225$	3	Trigonal planar
$0.225-0.414$	4	Tetrahedral
$0.414-0.732$	4	Square planar
$0.414-0.732$	6	Octahedral
$0.732-1.000$	8	Body-Centered Cubic
>1.000	12	Edge-Centered Cubic

$2 \mathrm{O}-\mathrm{O}$

4

- Isoelectronic series: different ions with same number of electrons (sequence of ions in which the charge increases with increasing atomic number \& contains the same number of electrons)

- Some ions can have ionic radii same as other ions \& this most important requirement substitution

Examples

IR of $\mathrm{Na}^{+}, \mathrm{Ca}^{2+}, \mathrm{Cd}^{2+}+, \mathrm{Y}^{3+}+, \mathrm{Ti}^{3+}, \mathrm{Th}^{4+}=1 \mathrm{~A}^{\circ}(\mathrm{CN}=6)$ IR of $\mathrm{Hf}^{4+} \& \mathrm{Zr}^{4+} \approx 0.80 \mathrm{~A}^{\circ}$ (6-fold coordination)
IR of $\mathrm{Fe}^{3+}, \mathrm{Co}^{3+}+, \& \mathrm{Ni}^{3+} \approx 0.65 \mathrm{~A}^{\circ}(\mathrm{CN}=6)$

- The ionic radii of isoelectronic series decrease with increasing atomic number for cation \& anion
- The radii of ions with the same charge increase with increasing Z (downward in the periodic table)
- The radii of ions of the same element decrease with +ve charge \& increase with -ve charge
- The radii of ions with the charge +2 \& +3 among the transition metals of 4 period decrease with increasing Z, by implying a contraction of the electron cloud as the 3d orbitals are filled

IONIC SUBSTITUTIONS IN A CRYSTALS

- Goldschmidt Rules of substitution:

1. Ionic radii: substitution can be occur if radii of an ions differ by $\leq \pm 15 \%$
2. Charge: substitution can be occur if radii of an ions are the same or differ by $\leq \pm 1 \%$ with provided electrical neutrality, \& if the difference $> \pm 1$ substitution is less intense
3. Ionic potential (IP = charge/size): When two ions occupy the same structural site, the one with higher IP form stronger bond with anions
4. Electronigativity (X): limited substitution, the ions should be more or less equal in x (different x form bonds of different ionic character)
The 4th rule was formulated to explain discrepancies arose from the other three rules
Example: Na^{+}\& Cu^{+}are monovalent \& identical in size so according to the 1 st \& 2nd rules they should be substitute extensively in $\mathrm{NaAlSi}_{3} \mathrm{O}_{8}$ \& NaCl , but this substitution does not take place due to $\Delta x(\Delta X=1.0)$

Example: Can Th^{4+} substitute for Ce^{3+} in monazite (CePO ${ }_{4}$)? (Hint. It's a COUPLED SUBSTITUTIONS)

1 st: $\mathrm{IR}_{\mathrm{Th}^{4+}}=1.17 \AA$, $\mathrm{IRCe}^{34}=1.23 \AA, \Delta \mathrm{IR}=5.0 \%$ 2nd: Δ charge between $\mathrm{Th}^{4+} \& \mathrm{Ce}^{3+}=1$
3rd: $\mathrm{IP}_{\mathrm{Th}^{4+}}=3.42$, $\mathrm{IRCe}^{3+}=2.44, \mathrm{IP}_{\text {Th }}{ }^{4+}>\mathrm{IRCe}^{3+}$ 4th: $X_{\mathrm{Th}^{4+}}=1.3, \mathrm{XCe}^{3+}=1.1, \mathrm{IP}_{\mathrm{Th}^{4+}}>\mathrm{IRCe}^{3+}$
Yes, they can be substitute, But we must have a coupled substitution to maintain neutrality:

$$
\begin{gathered}
\mathrm{Th}^{4+}+\mathrm{Si}^{4+} \rightarrow \mathrm{Ce}^{3+}+\mathrm{P}^{5+} \\
\mathrm{CePO}_{4} \rightarrow \mathrm{ThSiO}_{4}
\end{gathered}
$$

COMPATIBLE Vs. INCOMPATIBLE TRACE ELEMENTS

- Incompatible elements: tend to stay in liquid (in melt), large \& highly charged to fit into common rock-forming minerals during crystallization, These elements become concentrated in melts
- are highly concentrated in felsic rocks (e.g granite) which form by end phase of magma
- Incompatible elements divided into 2 groups:

1. Large-ion lithophile elements (LIL): owing to large size (Rb, Cs, Sr, Ba, K...)
2. High-field strength element (HFSE): owing to high charge (Zr, Hf, Ta, Nb, Th, U, Mo, W...)

- Compatible elements: Elements that fit easily into rock-forming minerals (Cr, V, Ni, Co, Ti...)
- The different ways in which the ions partitioned between solid \& liquid phases are described by:

1) Camouflage: when the minor element has the same charge \& ionic radius as major element
Example: $\mathrm{Hf}^{f^{4+}}(0.79 \AA$) commonly found in the mineral zircon ZrSiO_{4} replacing $\mathrm{Zr}^{4+}(0.80 \AA$ A $)$
2) Capture: when a minor element enters a crystal preferentially because it has a higher ionic potential than ion of the major element
Example: feldspar captures $\mathrm{Ba}^{2+}\left(1.44 \AA\right.$) or $\mathrm{Sr}^{2+}(1.21 \AA$) by $\mathrm{K}^{+}(1.46 \AA)$, the replacement of K accompanied by substitution of Al for Si
3) Admission: the entry of ion that has a lower IP than the major it is replacing because it has lower charge or a larger radius, or both
Example: $\mathrm{K}^{+}(1.46 \AA)$ replaced by $\mathrm{Rb}^{+}(1.57 \AA)$ in $\mathrm{K}-$ feldspar, $\mathrm{Ca}^{2+}\left(1.08 \AA \AA^{\circ}\right.$ by $\mathrm{Sr}^{2+}(1.21 \AA)$ in calcite \& $\mathrm{Cl}^{-}(1.72 \AA)$ by $\mathrm{Br}^{-}(1.88 \AA$) in chlorides

- Distribution coefficient ($\mathrm{D}=\mathrm{Cx} / \mathrm{Cl}$): concentration of minor element in a crystals / concentration of in a melt at equilibrium (where T is suitable)

Substitution	Occur when	D
Camoufiag	Charge $\&$ size are equal	$=1$
Capture	IP of minor < IP of major	>1
Admissio	IP of minor $>$ IP of major	<1

- Geothermometer: Distribution coefficient is useful in known the environment of crystallization (T-P)
> D is determined experimentally
> D are dependent on T, P, \& composition of the phases, so used to estimate temperature of formation of coexisting minerals

The ratio of the distribution coefficients for element y is:

$$
\frac{D_{A}}{D_{B}}=\frac{\left(C_{y}^{x}\right)_{A}}{\left(C_{y}^{x}\right)_{B}}=K=\text { constant. }
$$

Example:
Replacement of $\mathrm{Zn} 2+$ (0.68 Angstrom. IV coordination) in ZnS and $\mathrm{Pb} 2+$ (1.26 angstrom, six fold coordination) in PbS by $\mathrm{Cd} 2+(0.88$ Ansgtrom, IV zoordination). The electronegativities of the three elements are very similar and all form bonds with sulphur up to 85% covalent.
$\mathbf{Y}=\mathbf{m x}+\mathbf{b}$: the slope $(\mathbf{m})=\mathbf{2 0 8 0} \mathbf{- 0 . 0 2 6 4} \mathbf{P}$ and the intercept on the y -axis is \mathbf{b} $=-1.08$.

GEOCHEMICAL AFFINITY

- Geochemical affinity: geochemical classification of elements, \& also called Goldschmidt classification
- defined by examining ore smelting slag \&meteorite
- elements are divided according to how they partition between coexisting silicate liquid, sulfide liquid, metallic liquid, \& gas phase

Table 7.1 First Ionization Potentials and Electronegativities of the Elements

PROBLEMS

What do the elements of each of the following groups have in common (use the periodic table)
B, AI, Ga, \& In

$$
[\mathrm{B}]_{5}=[\mathrm{He}]_{2} 2 s^{2} 2 p^{1} \quad[\mathrm{Al}]_{13}=[\mathrm{Ne}]_{10} 3 s^{2} 3 p^{1}
$$

$[G a]_{31}=[A r]_{18} 3 d^{104 s^{2} 4 p^{1} \quad[I n]_{49}=[K r]_{36} 3 d^{105} s^{2} 5 p^{1} .}$ All with $s^{2} p^{1}$ valence electronic configurations +3 is the most common valence state
$\mathrm{Be}, \mathrm{Mg}, \mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}, \& \mathrm{Ra}$

$$
\begin{array}{cc}
{[\mathrm{Be}]_{4}=[\mathrm{He}]_{2} 2 \mathrm{~s}^{2}} & {[\mathrm{Mg}]_{12}=[\mathrm{Ne}]_{10} 3 \mathrm{~s}^{2}} \\
{[\mathrm{Ca}]_{20}=[\mathrm{Ar}]_{18} 4 \mathrm{~s}^{2}} & {[\mathrm{Sr}]_{38}=[\mathrm{Kr}]_{36} 5 \mathrm{~s}^{2}} \\
{[\mathrm{Ba}]_{56}=[\mathrm{Xe}]_{54} 6 \mathrm{~s}^{2}} & {[\mathrm{Ra}]_{88}=[\mathrm{Rn}]_{86} 7 \mathrm{~s}^{2}}
\end{array}
$$

All with s^{2} valence electronic configurations

$$
+2 \text { is the most common valence state }
$$

N, P, As, Sb, \& Bi

$[\mathrm{N}]_{7}=[\mathrm{He}]_{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{3} \quad[\mathrm{P}]_{15}=[\mathrm{Ne}]_{10} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{3} \quad[\mathrm{As}]_{33}=[\mathrm{Ar}]_{18} 3 \mathrm{~d}^{104 s^{2} 4 p^{3}}$ $[\mathrm{Sb}]_{51}=[\mathrm{Kr}]_{36} 4 \mathrm{~d}^{105 s^{2} 5 p^{3}} \quad[\mathrm{Bi}]_{83}=[\mathrm{Xe}]_{54} 4 \mathrm{f}^{14} 5 \mathrm{~d}^{10} 6 \mathrm{~s}^{2} 6 \mathrm{p}^{3}$ All with $s^{2} p^{3}$ valence electronic configurations $\pm 3, \&+5$ is the most common valence state
$\mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sc}^{3+}, \mathrm{Ti}^{4+}, \mathrm{V}^{5+}, \& \mathrm{Cr}^{6+} \quad$ All are same as noble gasses
write the electron formula for atom having 14e- \& predict its highest + ve valence

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}=[\mathrm{Ne}]_{10} 3 s^{2} 3 p^{2}=[\mathrm{Si}]_{14},+4 \text { valence }
$$

By Table 5.2, Determine how many sequences end with a valence 0 First 6 sequence (period), which end in Noble gases [He, Ne, Ar, Kr, $\mathrm{Xe}, \& \mathrm{Rn}$]
Elements having similar chemical properties tend to be associated in nature. For the following pairs of elements indicate whether or not you expect them to be associated with each other. (\& for it's common ions) (K-Rb) (Al-Ge) (Sc-Cu) (S-Se) (Li-Mg)
$[K]_{19}=[\mathrm{Ar}]_{18} 4 \mathrm{~s}^{1}$, valence $=+1 \quad[\mathrm{Rb}]_{37}=[\mathrm{Kr}]_{36} 5 \mathrm{~s}^{1}$, valence $=+1$
Same configurations \& valence so can associate
$\mathrm{K}^{+}=[\mathrm{Ar}]_{18}$ (0 valence) $\quad \mathrm{Rb}^{+}=[\mathrm{Kr}]_{36}$ (0 valence)
As ions can be associate (same electron configurations \& valence)

Calculate the atomic weight of magnesium

Isotopes	Relative Abundance	Mass
${ }^{24}{ }_{12} \mathrm{Mg}$	78.99%	23.985042 amu
${ }^{25}{ }_{12} \mathrm{Mg}$	10.00%	24.985837 amu
${ }^{26}{ }_{12} \mathrm{Mg}$	11.01%	25.982593 amu

Atomic Wight $=\Sigma\left(A^{*} \mathrm{~m}\right)=(0.7899 \times 23.985042)+(0.1 \times 24.985837)+$ (0.1101×25.982593) $=24.30505 \approx 24.31 \mathrm{amu}$
Calculate the formula weight of orthoclase $\left(\mathrm{KAlSi}_{3} \mathrm{O}_{8}\right)$
Mw (K=39.1, Al=27, $\mathrm{Si}=28.1, \mathrm{O}=16$)
$39.1+27+(3 \times 28.1)+(8 \times 16)=\mathbf{2 7 8 . 4 g} / \mathrm{mol}$
How many moles of Na^{+}are present in 1 L of an aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ containing 4.760 g of the compound?

$$
M w(N a=23.0, S=32.1, O=16.0)
$$

$\mathrm{MW}_{\mathrm{Na}_{2} \mathrm{SO}_{4}}=2 \times 23+32.1+4 \times 16=142.1 \mathrm{~g} / \mathrm{mol}$ $\mathrm{Na}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{Na}^{+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow 1 \mathrm{molNa}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{molNa}^{+}$
$2 \mathrm{n}_{\mathrm{Na}_{2} \mathrm{SO}_{4}}=\mathrm{n}_{\mathrm{Na}^{+}} \rightarrow \mathrm{n}_{\mathrm{Na}_{2} \mathrm{SO}_{4}}=\mathrm{m} / \mathrm{Mw}=0.0335 \mathrm{~mol}$ $\mathrm{n}_{\mathrm{Na}}=2 \mathrm{n}_{\mathrm{Na}_{2} \mathrm{SO}_{4}}=1 / 20.0335 \mathrm{~mol}=0.0670 \mathrm{~mol}$

Calculate wt of 1 atom ${ }^{238} \mathrm{U}$ in g (mass of isotope $=238.050784 \mathrm{amu}$)
$\mathrm{Av}=6.022045 \times 10^{23}$ atoms $/ \mathrm{mol}$
Weight $=$ mass $/ \mathbf{A v}$
$238.050784(\mathrm{~g} / \mathrm{mol}) / 6.022045 \times 10^{23}$ (atoms $/ \mathrm{mol}$)
$=3.953 \times 10^{-22} \mathrm{~g} /$ atom
How many atoms of iron are present in 5.00 g of $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$?
Mw ($\mathrm{Fe}=55.8, \mathrm{O}=16.0) \rightarrow \mathrm{MW}_{\mathrm{Fe}_{2} \mathrm{O}_{3}}=2 \times 55.8+3 \times 16.0=159.6 \mathrm{~g} / \mathrm{mol}$
$\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{Fe}^{3+}+3 \mathrm{O}^{-2} \rightarrow 1 \mathrm{molFe}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{molFe}{ }^{3+}$
$\mathrm{n}_{\mathrm{Fe}^{3+}}=2 \mathrm{n}_{\mathrm{Fe}_{2} \mathrm{O}_{3}}=2 \times 5.00 \mathrm{~mol} / 159.6=0.0627 \mathrm{~mol}$
Atoms $=\mathrm{n}_{\mathrm{Fe}^{2+}} \times \mathrm{Av}=3.773 \times 10^{22}$
Calculate concentration of Cr in chromite $\mathrm{FeCr}_{2} \mathrm{O}_{4}$
$\mathrm{Mw}(\mathrm{Fe}=55.8, \mathrm{Cr}=52.0, \mathrm{O}=16.0)$
$\mathrm{MW}_{\mathrm{FeC}_{r_{2}} \mathrm{O}_{4}}=55.8+2 \times 52.0+4 \times 16.0=223.8$

$$
\mathrm{FeCr}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Fe}^{2+}+2 \mathrm{Cr}^{+}+4 \mathrm{O}^{-2}
$$

$[\mathrm{Cr}]=\mathrm{w}+\%=(2 \times 52.0 / 223.8) 100 \%=46.5 \%$

If the conc. of $\mathrm{SO}_{4}{ }^{2}=2.5 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$, how many grams of $\mathrm{SO}_{4}{ }^{2-}$ are present in one liter?

$$
\begin{gathered}
\mathrm{Mw}(\mathrm{~S}=32.1, \mathrm{O}=16.0), \mathrm{MW}_{\mathrm{sO}_{4}{ }^{2}}=96.1 \mathrm{~g} / \mathrm{mol} \\
\mathrm{n}_{\text {solute }}=\text { Molarity } \times \mathrm{V}_{\text {solution }}=2.5 \times 10^{-3} \mathrm{~mol} \\
\mathrm{~m}=\mathrm{n} \times \mathrm{Mw}=2.5 \times 10^{-3} \times 96.1=0.420 \mathrm{~g} \\
{\left[\mathrm{SO}_{4}{ }^{2-}\right]=\mathrm{m} / \mathrm{L}=0.420 \mathrm{~g} / 1 \mathrm{~L}=0.420{\mathrm{~g} \mathrm{sO}_{4}{ }^{2}-} / \mathrm{L}}
\end{gathered}
$$

A solution of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ contains $2 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$ of Al^{3+}, How many grams of $\mathrm{SO}_{4}{ }^{2-}$ does it contain per liter?

$$
\begin{aligned}
& \mathrm{Mw}(\mathrm{Al}=27.0, \mathrm{~S}=32.1, \mathrm{O}=16.0) \\
& \mathrm{Mw}\left(\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}=342.3, \mathrm{SO}_{4}=96.1\right) \\
& \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \rightarrow 2 \mathrm{Al}^{3+}+3 \mathrm{SO}_{4}{ }^{2 .} \\
& 1 / 2 \mathrm{n}_{\mathrm{Al}^{3+}}=1 / 3 \mathrm{n}_{\mathrm{SO}_{4}{ }^{2}-} \rightarrow 2 / 3 \mathrm{n}_{\mathrm{SO}_{4}{ }^{2}}=\mathrm{n}_{\mathrm{Al}^{3+}} \\
& \mathrm{n}_{\mathrm{SO}_{4}{ }^{2}}=3 \times 2 \times 10^{-4} / 2=3.0 \times 10^{-4} \mathrm{~mol} / \mathrm{L} \\
& \mathrm{msO}_{4^{2}-}=3.0 \times 10^{-4} \times 96.1=0.0288 \mathrm{~g} / \mathrm{L}
\end{aligned}
$$

Determine \%ionic \& \%covalent character of: $\mathrm{NaCl}, \mathrm{FeCl}_{2}, \mathrm{CuCl}$, $\mathrm{AlCl}_{3}, \& \mathrm{CCl}_{4}(\mathrm{X}: \mathrm{Cl}=3.0, \mathrm{Na}=0.9, \mathrm{Fe}=1.8, \mathrm{Cu}=1.9, \mathrm{Al}=1.5, \mathrm{C}=2.5)$

ΔX	0.5	1.1	1.2	1.5	2.1
Ionic\%	6%	26%	30%	43%	67%

$\mathrm{NaCl}=\mathrm{xCl}-\mathrm{xNa}=3.0-0.9=2.1 \rightarrow 67 \%$ ionic
$\mathrm{FeCl}_{2}=\mathrm{xCl}-\mathrm{xFe}=3.0-1.8=1.2 \rightarrow 30 \%$ ionic
$\mathrm{CuCl}=\mathrm{xCl}-\mathrm{xCu}=3.0-1.9=1.1 \rightarrow 26 \%$ ionic
$\mathrm{AlCl}_{3}=\mathrm{xCl}-\mathrm{xAl}=3.0-1.5=1.5 \rightarrow 43 \%$ ionic
$\mathrm{CCl}_{4}=x \mathrm{Cl}-\mathrm{xC}=3.0-2.5=0.5 \rightarrow 6 \%$ ionic
Covalent character $=100 \%$ - ionic character
Write an equation to represent the dissociation of $\left(\mathbf{N H}_{\mathbf{4}} \mathbf{)}_{\mathbf{2}} \mathbf{S O}_{\mathbf{4}}\right.$ into ions in an aqueous solution
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NH}_{3}(\mathrm{~g})+2 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}{ }^{2-}{ }_{(\mathrm{aq})}$
The bond $\mathrm{NH}_{4}-\mathrm{SO}_{4}$ are ionic bond (more solube) whereas $\mathrm{S}-\mathrm{O}$ are covalent(less solube)
Calculate CN for $\mathrm{Ca}^{2+} \& \mathrm{Sr}^{2+}$ relative to $\mathrm{O}^{-2}, \&$ use the result to predic \dagger substitution of Ca^{2+} by $\mathrm{Sr}^{2+}(\mathrm{Ca}=1.18 \AA, \mathrm{Sr}=1.21 \AA, \mathrm{O}=1.32 \AA)$

Radius ratio (RR)	CN	Arrangement
<0.155	2	Linear
$0.155-0.225$	3	Trigonal planar
$0.225-0.414$	4	Tetrahedral
$0.414-0.732$	4	Square planar
$0.414-0.732$	6	Octahedral
$0.732-1.000$	8	Body-Centered Cubic
>1.000	12	Edge-Centered Cubic

$R_{\text {ca-o }}=1.18 \AA / 1.32 \AA=0.894 \rightarrow \mathrm{CN}=8$
$R_{\text {Sr-o }}=1.21 \AA / 1.32 \AA=0.917 \rightarrow C N=8$
Substitution can occur
Hg^{+}can replace Sr^{2+} in $\left(\mathrm{SrCO}_{3}\right)$?
$1 \mathrm{st}: I R_{H g}=1.05 \AA, I R_{S r}=1.21 \AA[A v g], \Delta I R=13 \% ~ \square$
2nd: Δ charge $=1 \square$
3rd: $I P_{\mathrm{Hg}}=0.952$, $\mathrm{IRs}_{\mathrm{sr}}=1.65, \mathrm{IP}_{\mathrm{Hg}}<\mathrm{IPsr} X$
Sr making stronger bond with CO_{3}
4th: $\mathrm{XHg}_{\mathrm{Hg}}=1.9, \mathrm{X}_{\mathrm{sr}}=1, \Delta \mathrm{X}=0.9 \mathrm{X}$
There are differences in binding character due to highly differences in $X \rightarrow$ cannot occur
$\mathrm{Li}^{+} \& \mathrm{Mg}^{2+}$ have similar radii \& x , but Li+ does not replace Mg^{2+} in olivine. Explain the reason for this occurrence \& suggest another host mineral for Li^{+}in which it does replace Mg^{2+}

- Li is incompatible elements (Large-ion lithophile elements LIL) tend to stay in liquid magma
- The ionic potential of Mg is very larger than of Li (2 times smaller) so Mg make stronger chemical bond with silica (IP = charge / radii)

$$
\begin{gathered}
I P_{\mathrm{Li}}=1 / R_{\mathrm{Li}}, I P_{M g}=2 / R_{M g} \\
R_{\mathrm{Li}} \approx R_{M g} \rightarrow I P_{\mathrm{Li}}=1 / X, I P_{M g}=2 / X \\
I P_{\mathrm{Li}} / I P_{M g} \approx 1 / 2 \rightarrow 2 I P_{\mathrm{Li}} \approx I P_{M g}
\end{gathered}
$$

- $\quad \mathrm{Mg}^{2+}$ can be substitute easly by Fe^{2+} becouse the charge are equal, \& radii also nearly equal so the ionic potentials (IP = charge / radii) are the same

- There are 2 type of chemical reactions:
- Kinetic reactions: Continuous raction
- Equilibrium reactions: Dynamic or reversable reaction (forward \& backward)

Example: Chemical reactions \& equilibria

As salt (halite NaCl) dissolved in water, The concentration of Na^{+}increase rapidly \& then reaches equilibrium, solution becomes saturated with Na^{+}

$$
\mathrm{NaCl}(\mathrm{~s}) \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-} \text {forward reaction }
$$ $\mathrm{Na}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{NaCl}(\mathrm{s})$ backward reaction $\mathrm{NaCl}(\mathrm{s}) \leftrightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}$equilibrium (saturation)

The reaction doesn't stop at equilibrium, but rate of forward reaction become = backward

- Solubility: is the amount of a compound that dissolves to form a saturated solution Solubility $=\frac{\text { mass of solute in gram }[\mathrm{m}]}{\text { volume of solution in } L[\mathrm{~V}]}$
Example: $\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
When this reaction takes place in contact with the atmosphere it will not achieve equilibrium, becouse CO_{2} constantly goes into the atmosphere
حتى يبقى التفاعل متزن يجب ان يكون في نظام مغلق، فأز الة او اضافة شيء منه او تغيير الحالة الفيزيائية (الحرارة والضغط) يؤدي للاخلال بالاتزان بين وينز اح التفاعل باتجاه النو اتج او المتفاعلات، بهذا المثالل يتم ازالة ثاني اكسيد الكربون بشكل دون دوري الى الغلاف الجوي فلا يصل لاتزان، وحتى التفاعلات البطيئة جدا قد لا تصل لحالة الاتزان Example as previous example The same also applies when it happens below the water table (aquafare), because the slowness of a reaction taking place in nature often prevents this reaction from achieving equilibrium state

- The Law of Mass Action Assumptions:

- At Equilibrium The Concentrations of Products \& Reactants are Constant

Rates of Forward Reaction (Vf) = Backward (Vb)

$$
\begin{gathered}
\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{cC}+\mathrm{dD} \\
\mathrm{Vf}=\mathrm{K} 1[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}} \& \mathrm{Vb}=\mathrm{K} 2[\mathrm{D}]^{\mathrm{d}}[\mathrm{C}]^{\mathrm{c}} \\
\mathrm{~A} \dagger \text { equilibrium }: \mathrm{Vf}=\mathrm{Vb} \\
\boldsymbol{K}=\frac{\boldsymbol{k} \mathbf{1}}{\boldsymbol{k} \mathbf{2}}=\frac{(C)^{c}(D)^{d}}{(A)^{a}(B)^{b^{\prime}}} \boldsymbol{K}=\frac{\boldsymbol{k} 1}{\boldsymbol{k} \mathbf{2}}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}
\end{gathered}
$$

T-dependent, $(X)=$ concentrations, $[X]=$ Activity

$$
[X]=Y(X),(Y<1)
$$

- The units of concentrations

$$
\begin{aligned}
\text { Molality }(m) & =\frac{n[\text { of solute in mole }]}{m[\text { of solvent in } \mathrm{Kg}]} \\
\text { Molarity }(M) & =\frac{n[\text { of solute in } \mathrm{mol}]}{V[\text { solution in } L]} \\
\text { Formality }(F) & =\frac{n[\text { of solute }]}{m[\text { of solution } \mathrm{kg}]} \\
\text { Normality }(N) & =\frac{n \text { of wieght of solute }}{V \text { in Lof solution }}
\end{aligned}
$$

Volume increase with increasing T so as T increase $M, \&$ N decreases. m \& F are more accurate

$$
X=\frac{-b \pm\left(b^{2}-4 a c\right)^{1 / 2}}{2 a}
$$

- Conventions of The law of Mass Action:
- Activities expressed in moles (M, F, or m)
- Activities of pure solid (s) \& liquid (l) $=1$
- Concentration of gas are in atm partial pressure
- Reactions assumed to take place at STP $\left(25^{\circ} \mathrm{C}\right.$, 1 atm$)$

DISSOCIATION OF WEAK ACIDS \& BASES

- Most acid in nature is a weak acid
- Weak acid: doesn't completely dissociate

Arrhenius		Bronsted
Acid	releases H^{+}when dissolved in water release OH^{-}when dissolved in water	Donates proton H^{+}to another substance
accepts proton H^{+}from		
other substanc		

- In Geochemistry we adopt Arrhenius since we deal with aqueous solutions of electrolytes
- Strong acids release all of their H, while the weak release part of their H . The same applies to bases, expect bases that are not soluble in water like $\mathrm{Mg}(\mathrm{OH})_{2}$ Strong acidsStrong bases
Strong acid
Weak acid
Strong base
$\mathrm{HCl}, \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4} \ldots$
$\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{4} \mathrm{SiO}_{4}$ Metal \& alkaline earthy Hydroxide Lanthanum hydroxide

Weak acids

$\mathrm{NH}_{4} \mathrm{OH}, \mathrm{Ni}(\mathrm{OH})_{2}, \mathrm{Cu}(\mathrm{OH})_{2}$
hydroxides of REE (La ... LU)

- Amphoteric: can behave like acid or base depend on H^{+}concentration in the water (Mostly transition elements $\mathrm{Be}, \mathrm{Al}, \mathrm{Si}, \mathrm{Ti}, \mathrm{V}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Zn}, \mathrm{Ag}, \mathrm{Au}, \mathrm{Sn}, \mathrm{Pb}, \mathrm{U})$
Example When $0.1 \mathrm{molCH} \mathrm{COOH}_{3} \mathrm{COO}$ dissolved in $1 \mathrm{LH}_{2} \mathrm{O}$ $(Y=1)$ calculate concentrations of all reactants \& product at equilibrium \& calculate the degree of dissociation D\% ($\mathrm{K}=1.76 \times 10^{-4}$)

	$\mathrm{CH}_{3} \mathrm{COOH}$	\leftrightarrow	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	H^{+}
n	1 mol	\leftrightarrow	1 mol	1 mol
I	0.1 m	\leftrightarrow	0	0
Δ	-X	\leftrightarrow	+X	+X
F	$0.1-\mathrm{X}$	\leftrightarrow	+X	+X

$K=\left[\mathrm{H}^{+}\right]\left[\mathrm{CH} 3 \mathrm{COO}^{-}\right] /\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=1.76 \times 10^{-5}$
$K=X^{2} /(0.1-X)=1.76 \times 10^{-5}$
$\rightarrow \mathrm{X}^{2}+1.76 \times 10^{-5} \mathrm{X}-1.76 \times 10^{-6}=0$
$X=\left(-1.76 \times 10^{-5} \pm 2.65 \times 10^{-3}\right) / 2= \pm 1.32 \times 10^{-3}$
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{CH} 3 \mathrm{COO}^{-}\right]=\mathrm{X}=1.32 \times 10^{-3} \mathrm{~m}$
$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=0.1-\mathrm{X}=0.0987 \mathrm{~m} \approx 0.1 \mathrm{~m}$
Degree of dissocation $(D \%)=\frac{X}{[\text { reactant }] i}$
$D \%=\left(1.32 \times 10^{-3} / 0.1\right) \times 100 \%=1.32 \%$

- The dissociation of water into ions:
$\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}^{+}+\mathrm{OH}^{-} ; \mathrm{Kw}$ at STP $=1.0 \times 10^{-14}$ $K w$ at STP $=\left[H^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$ $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{7}\right], \mathrm{pX}=-\log [\mathrm{X}],\left[\mathrm{H}^{\dagger}\right]=10-\mathrm{pH}$ $\mathrm{pH}+\mathrm{pOH}=14, \mathrm{pKc}+\mathrm{pKa}=14$
$\mathrm{pH} \times \mathrm{pOH}=10^{-14}, \mathrm{pKc} \times \mathrm{pKa}==10^{-14}$
Example In the previous ex calculate pH, pOH, \& pK Solution
$\mathrm{pH}=-\log \left(1.32 \times 10^{-3}\right)=2.88$
$[\mathrm{OH}-]=\left(1 \times 10^{-14}\right) /\left(1.32 \times 10^{-3}\right)=0.757 \times 10^{-11} \mathrm{~m}$
$\mathrm{pOH}=-\log [\mathrm{OH}]=-\log \left(0.757 \times 10^{-1}\right)=11.2$
OR : $\mathrm{pOH}=14-\mathrm{pH}=11.2$
pK $=-\log \left[1.76 \times 10^{-4}\right]=3.75$
- Concentrations (activities) are represented by expressions with -ve exponents $\boldsymbol{X}=\mathbf{1 0}^{\boldsymbol{\operatorname { l o g }}^{x}}$
Example

$$
2.5 \times 10^{-5}=10^{\log ^{2.5} \times 10^{-5}}=10^{-4.6}
$$

- Diprotic acid: Weak acids dissociate stepwise
- The calculation of activities can be done with 2 procedures: stepwise \& simultaneous
Example If solution contains 0.1 molH dissolved in $1 \mathrm{LH}_{2} \mathrm{O}$ (if $\mathrm{K} 1=10^{-7}$, \& K2 $=10^{-12.9}$)

$$
\begin{aligned}
& \begin{array}{ccc}
\mathrm{H}_{2} \mathrm{~S} & \leftrightarrow & \mathrm{HS}^{-}
\end{array} \mathrm{H}^{+} \\
& \text {0.1(0.1- } \quad \leftrightarrow \quad \rightarrow \quad+X \quad+X \\
& \mathrm{X}^{2} / 0.1=10^{-7} \rightarrow \mathrm{X}=10^{-4} \mathrm{~m}, \mathrm{pH}=4.0 \\
& \left(10^{-4}\right) / 0.1 \ll 0.1 \boxed{\square}, \mathrm{D} \%=100\left(10^{-4}\right) / 0.1=0.1 \% \\
& \begin{array}{cccc}
\mathrm{HS}^{-} & \leftrightarrow & \mathrm{S}^{-2} & + \\
10^{-4}-\mathrm{y} & \leftrightarrow & +\mathbf{y} & \\
10^{-4}+\mathrm{y}
\end{array} \\
& \left(10^{-4}+y\right)(y) /\left(10^{-4}-y\right)=10^{-12.9} \\
& y \ll 10^{-4} \text { then } 10^{-4}+y=10^{-4}-y=10^{-4}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{D} \%=10^{-12.9} \times 100 / 10^{-4}=10^{-6.9 \%} \\
\mathrm{H}_{2} \mathrm{~S} \text { stronger than } \mathrm{HS}^{-} \text {because (K1>K2) } \\
\text { pH CONTROL OF DISSOCIATION EQUILIBRIUM }
\end{gathered}
$$

- dissociation of weak acids \& bases controlled by the pH of the geochemical environment
- We can rewrite the mass action equations as:

$$
\begin{equation*}
\left[H_{2} S\right]=\frac{\left[H S^{-}\right]\left[H^{+}\right]}{10^{-7}} \&\left[S^{-2}\right]=\frac{\left[H S^{-}\right] 10^{-12.9}}{\left[H^{+}\right]} \tag{1}
\end{equation*}
$$

If we know the concentration of all species, then:

$$
\begin{gather*}
{\left[\mathbf{H}_{\mathbf{2}}^{\mathbf{S}}\right]+\left[\mathbf{H S}^{-}\right]+\left[\mathbf{S}^{2}\right]=\mathbf{X}} \\
\frac{\left[H S^{-}\right]\left[H^{+}\right]}{10^{-7}}+\left[H S^{-}\right]+\frac{\left[H S^{-}\right] 10^{-12.9}}{\left[H^{+}\right]}=X \\
{\left[\boldsymbol{H S}^{-}\right]=\frac{\boldsymbol{X}}{\mathbf{1}+\frac{\left[\boldsymbol{H}^{+}\right]}{\mathbf{1 0}^{-7}}+\frac{\mathbf{1 0}^{-\mathbf{1 2 . 9}}}{\left[\boldsymbol{H}^{+}\right]}}=(\mathbf{2})} \tag{2}
\end{gather*}
$$

The activity ratios of the ions depend on the activity of hydrogen ion (i.e. pH)

Example in the previous example if the total amount of sulphur species $10^{-2} \mathrm{~mol} / \mathrm{L}$ calculate the activities of three species as a function of $\mathrm{pH}(A \dagger \mathrm{pH}=6)$
Solution

$$
\mathrm{pH}=6 \rightarrow[\mathrm{H}]=10^{-6}
$$

$$
\begin{aligned}
& {\left[H S^{-}\right]=\frac{10^{-2}}{1+\frac{10^{-6}}{10^{-7}}+\frac{10^{-12.9}}{10^{-6}}}=9.1 \times 10^{-4}} \\
& {\left[H_{2} S\right]=\frac{9.1 \times 10^{-4} x 10^{-6}}{10^{-7}}=9.1 \times 10^{-3}} \\
& {\left[S^{-2}\right]=\frac{9.1 \times 10^{-4} \times 10^{-12.9}}{10^{-6}}=1.1 \times 10^{-10}}
\end{aligned}
$$

[$\left.\mathrm{H}_{2} \mathrm{~S}\right]$ the dominant species at $\mathrm{pH}=6$ (90.0\%) of all S-ions
SOLUBILITY OF AMORPHOUS SILICA

- Solubility of silica is Very Low because the chemical bond in silica is very strong (mostly to totally covalent bond \& water molecules react with ionic bonding molecule \& minerals)
- Metallic Oxide dissolve to produce strong base, \& Non-metallic dissolve to produce weak acid
Examples $\quad \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$

$$
\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}
$$

$$
\mathrm{SiO}_{2} \text { (amorphous) }+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{4} \mathrm{SiO}_{4}, \mathrm{~K}=10^{-2.74}
$$

- Silicic acid $\left(\mathrm{H}_{4} \mathrm{SiO}_{4}\right)$ form mostly by chemical weathering of aluminosilicates rather than from
amorphous dissolution, because solubility of amorphous silica is very low (e.g. Olivine)
- When solubility of silica exceeded, forms amorphous silica which settles down as a gelatinous precipitate
- In gelatinous precipitate the water become expelled \& crystallization starts to form opal-A \& opal CT (intermediate) \& gives rise to cryptocrystalline chalcedony (chert,flint) \& occurs as geodes \& agate
- Dissociation of Silicic Acid

$\mathrm{H}_{4} \mathrm{SiO}_{4}$	\leftrightarrow	$\mathrm{H}_{3} \mathrm{SiO}_{4}{ }^{-}$	+	H^{+}	$\mathrm{K}=10 \cdot 9.7$
$\mathrm{H}_{3} \mathrm{SiO}_{4}{ }^{-}$	\leftrightarrow	$\mathrm{H}_{2} \mathrm{SiO}_{4}{ }^{-2}$	+	H^{+}	$\mathrm{K}=10^{-13.2}$
$\mathrm{H}_{2} \mathrm{SiO}_{4}{ }^{-2}$	\leftrightarrow	$\mathrm{HSiO}_{4}{ }^{-3}$	+	H^{+}	$\mathrm{K}=10.9 .8$
$\mathrm{HSiO}_{4}{ }^{-3}$	\leftrightarrow	$\mathrm{SiO}_{4}{ }^{-4}$	+	H^{+}	$K=10^{-13.3}$

- Activity of silicic acid at $25^{\circ} \mathrm{C}$ $\mathrm{SiO}_{2(\mathrm{~s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{4} \mathrm{SiO}_{4(\mathrm{aq})}, \mathrm{K}=10^{-2.74},\left[\mathrm{H}_{4} \mathrm{SiO}_{4}\right] 1^{-2.74}$
- Equilibrium is pH - independent because H ion isn't produced but T-dependent
Example degree of dissociation of silicic acid at pH=7 calculated stepwise from the eq of the first dissociation

$$
\begin{aligned}
& \mathrm{H}_{4} \mathrm{SiO}_{4} \leftrightarrow \mathrm{H}_{3} \mathrm{SiO}_{4}{ }^{-} \quad+\mathrm{H}^{+} \quad \mathrm{K}=10^{-9.7} \\
& \begin{array}{cccccc}
\mathbf{i} & 10^{-2.74} & \leftrightarrow & 0 & + & \mathbf{0} \\
\Delta & 10^{-2.74-\mathrm{x}} & \leftrightarrow & \mathrm{X} & + & \mathrm{X} \\
\mathrm{~F} & 10^{-2.74} & \leftrightarrow & \mathrm{X} & + & \mathrm{X}
\end{array} \\
& \frac{\left[\mathrm{H}_{3} \mathrm{SiO4}^{-}\right]}{10^{-2.74}}=\frac{10^{-9.7}}{10^{-7}} \rightarrow\left[\mathrm{H}_{3} \mathrm{SiO}^{-}\right]=10^{-5.44} \\
& D \%=\frac{10^{-5.44}}{10^{-2.74}} x 100 \%=0.19 \%
\end{aligned}
$$

[$\mathrm{H}_{3} \mathrm{SiO}_{4}{ }^{-}$] at pH $7<500$ times than $\mathrm{H}_{4} \mathrm{SiO}_{4}$ so does not contribute to the solubility of SiO_{2}

- the dissociation of silicic acid is extremely low at pH <8 \& rises rapidly after that

- A consequence of that is the rapid increase of solubility of amorphous silica since it is based on the sum of the Si-bearing ions in solution
- The figure shows a small change in the $\mathrm{pH}(\mathrm{at} \mathrm{pH}>8$) would result in the stabilization of SiO_{2}
Example decrease of $0.1 \mathrm{pH}(8.5$ to 8.4$)$ of a saturated solution of silica deposit $1.37 \mathrm{mg} / \mathrm{L}$, This amount produce huge silica deposits when the large volumes of groundwater over a large period of time, \& by convert the unit into $\mathrm{mol} / \mathrm{L}, 25 /\left(60.08 \times 10^{3}\right)=4.16 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$
- Quartz has lower solubility than amorphous

Example

$$
\mathrm{SiO}_{2} \text { (quartz) }+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{4} \mathrm{SiO}_{4}, \mathrm{~K}=10^{-4.1}
$$

[$\mathrm{H}_{4} \mathrm{SiO}_{4}$] in contact with quartz is equal to $10^{-4.1} \mathrm{~m}$ $10-4.1$ equivalent to $5.9 \mathrm{mg} / \mathrm{L}$ of SiO_{2} in solution

- Silica vs Amorphous in river waters
$\mathrm{SiO}_{2 \text { riverwater }}=(6.5 \times 60.1 / 28.1)=13.9 \mathrm{ppm}(\mathrm{mg} / \mathrm{L})$
Crystalline Silic : 13.9>5.9ppm \rightarrow supersaturated Amorphous Silica:13.9<110ppm \rightarrow Undersaturated PROBLEMS
Calculate pH of HF containing $0.1 \mathrm{~mol} / \mathrm{L}$.(pK 3.2)

	HF	\leftrightarrow	F^{-}	+	H^{+}
[Initial]	0.1 m		0		0
[Δ con]	-X		+X		+X
[Final]	0.1	$(0.1-\mathrm{x} \approx \mathrm{x})$		+X	
+X					

$\mathrm{pK}=3.2 \rightarrow \mathrm{~K}=10^{-3.2} \rightarrow \mathrm{X}^{2}=\mathrm{K}=10^{-3.2} \rightarrow \mathrm{X}=0.025 \mathrm{~m}$
$\mathrm{pH}=-\log [0.025]=1.6, \quad \mathrm{D} \%=\frac{\mathbf{0 . 0 2 5}}{0.1} \times 100 \%=25 \%$
Calculate the activities of all ions \& the pH of a solution containing $0.1 \mathrm{molH}_{3} \mathrm{PO}_{4} / \mathrm{L}$. (pK1 2.1, pK2 7.2, pK3 12.4)

	$\mathrm{H}_{3} \mathrm{PO}_{4}$	$\leftrightarrow \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-1}$	+ H^{+}
I	0.1 m	0	0
Δ	-X	+X	+X
F	Assumption 0.1	+X	+X
$\mathrm{pK}=-\log \mathrm{K} \rightarrow \mathrm{K}=10-2.1$			
$\mathrm{X}^{2}=0.1 \times 10^{-2.1} \rightarrow \mathrm{X}=\left[\mathrm{H}^{+}\right]=\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]=10^{-1.55}$			
D\% $=28.2 \%$ (good Assumption \rightarrow weak acid)			

Result : $\left[\mathrm{H}^{+}\right]=\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]=10^{-1.55} \mathrm{~mol} / \mathrm{L} \&\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]=0.0718 \approx 1.0 \mathrm{~mol} / \mathrm{L}$

$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-1}$	\leftrightarrow	$\mathrm{HPO}_{4}{ }^{-2}$
$10^{-1.55}$	+	H^{+}
As. $10^{-1.55}$	+X	$10^{-1.55}$
$\mathrm{pK}=7.2 \rightarrow \mathrm{~K}=10^{-7.2}$	As. $10^{-1.55}$	
$\frac{\left[\mathrm{HPO}^{-2}\right] \times 10^{-1.55}}{10^{-1.55}}=10^{-7.2}$		
$\mathrm{X}=10^{-7.2}=\left[\mathrm{HPO}_{4}{ }^{-2}\right]$		

$\mathrm{D} \%=10^{-3.65} \%$ (good Assumption \rightarrow very weak acid)
Result : $\left[\mathrm{H}^{+}\right] \approx\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right] \approx 10^{-1.55} \mathrm{~mol} / \mathrm{L} \&\left[\mathrm{HPO}_{4}{ }^{-2}\right] \approx 10^{-7.2} \mathrm{~mol} / \mathrm{L}$

$$
\frac{\left[{\left.P O 4^{-3}\right] x 10^{-1.55}}_{10^{-7.2}}^{10.4}\right.}{10^{-12.4}}
$$

$$
\left[\mathrm{PO}_{4}^{-{ }^{-3}}\right]=10^{-18.1}
$$

D\% $=10^{-10.9 \%}$ (good Assumption \rightarrow too weak acid)
Result : $\left[\mathrm{PO}_{4}{ }^{-}{ }^{-3}\right]=10^{-18.1} \mathrm{~mol} / \mathrm{L} \&\left[\mathrm{HPO}_{4}{ }^{-}\right] \approx 10^{-7.2} \mathrm{~mol} / \mathrm{L}\left[\mathrm{H}^{+}\right] \approx 10^{-1.5} \mathrm{~mol} / \mathrm{L}$
$\left[\mathrm{H}^{+}\right]$in all steps $=10^{-1.55} \mathrm{~mol} / \mathrm{L} \rightarrow \mathrm{pH}=1.55$
This acid completely disintegrates as put in water, so $\Delta \mathrm{pH}$ neglected

- All minerals can be considered as salts Salt + Water \rightarrow Anions + cations (acids + bases)
- solubility product constant Ksp directly proportional to the solubility, for $\mathbf{a A} \Leftrightarrow \mathbf{b B}+\mathbf{c} \mathbf{C}$ Ksp (at equilibrium) $=[\mathrm{B}]^{b} \times[\mathrm{C}]^{\mathrm{c}}$
Example Calculate $\left[\mathrm{SO}_{4}{ }^{2}\right.$] \& Calculate the amount of sulfate which dissolved in water $(\mathrm{Ksp}=69.19)$

$$
\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3(\mathrm{~s})} \Leftrightarrow 2 \mathrm{Al}^{3+}+3 \mathrm{SO}_{4}{ }^{-}
$$

$\left[\mathrm{Al}^{3}+\right]^{2}\left[\mathrm{SO}_{4}{ }^{2-}\right]^{3}=(2 \mathrm{X})^{2} \mathrm{x}(3 \mathrm{X})^{3}=108 \mathrm{X}^{5}=\mathrm{Ksp}$
$108 X^{5}=69.19 \rightarrow X=0.915 \mathrm{~mol} / \mathrm{L}$

$$
\left[\mathrm{SO}_{4}{ }^{-}\right]=3 \mathrm{X}=2.74 \mathrm{~mol} / \mathrm{L}
$$

$0.915 \mathrm{~mol} / \mathrm{Lx} 342.15 \mathrm{~g} / \mathrm{mol}=313 \mathrm{gm} / \mathrm{L}$ of water saturated الماء الذي يحتوي 313 جم/ل هو بحالة اتزان

- Ion Activity Product (IAP): for $a A \Leftrightarrow b B+c C$ IAP (at any time) $=[a B]^{b} x[b C]^{c}$
Example: A solution with $5 \times 10^{-2} \mathrm{molCa}^{2+} \& 7 \times 10^{-3} \mathrm{~mol}$ $\mathrm{SO}_{4}{ }^{2-}$ are saturated with respect to Anhydrite? Ksp 10-4.5 $\mathrm{CaSO}_{4} \Leftrightarrow \mathrm{Ca}^{2+}+\mathrm{SO}_{4}{ }^{2-}$, then $\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{SO}_{4}{ }^{2-}\right]=10-4.5$ $\mathrm{IAP}=5 \times 10^{-2} \times 7 \times 10^{-3}=3.5 \times 10^{-4}=10^{-3.45}$
IAP $>\mathrm{Ksp} \rightarrow$ solution is supersaturated with respect to anhydrite \rightarrow anhydrite precipitate
- Saturation Index: $\boldsymbol{S I}=\boldsymbol{l o g}^{\frac{1 A P}{K s p}}$

SI	Ksp Vs IAP	Saturation	State
0	IAP $=$ Ksp	saturation	equilibrium
<0	IAP $<$ Ksp	undersaturation	Dissolution
>0	IAP $>$ Ksp	supersaturation	Precipitation

- Anhydrite doesn't form directly, first gypsum forms \& transfers to anhydrite, so anhydrite dissolution is irreversible reaction
Example Calculate amount of gypsum at equilibrium from 100L of seawater (use values in previous example)

$$
\begin{gathered}
\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{Ca}^{2+}+\mathrm{SO}_{4}{ }^{2-}+2 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{Ksp}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{SO}_{4}{ }^{2-}\right]=10^{-4.6}
\end{gathered}
$$

If x moles of gypsum precipitate; the activities will be:

$$
\begin{gathered}
\mathrm{IAP}=\left(5 \times 10^{-2}-\mathbf{x}\right)\left(7 \times 10^{-3}-\mathbf{x}\right)=10^{-4.6} \\
\mathbf{X}=6.5 \times 10^{-3} \mathrm{~mol} / \mathrm{L}=1.11 \mathrm{~g} / \mathrm{L}=111.0 \mathrm{grams} / 100 \mathrm{~L} \\
\frac{\left[\mathrm{Ca}^{2+}\right]}{\left[\mathrm{SO}^{-2}\right]} \text { before preceptation }=\frac{5 \times 10^{-2}}{7 \times 10^{-3}}=79 \\
\frac{\left[\mathrm{Ca}^{2+}\right]}{\left[\mathrm{SO}^{-2}\right]} \text { After }=\frac{3.35 \times 10^{-2}}{5.5 \times 10^{-4}}=7.9
\end{gathered}
$$

7.9 is at equilibrium, \& This ratio continuously changes during precipitation

Geochemical Divide

Example 50.0 gNaCl is added to 1 L solution containing $10^{-3} \mathrm{molAg}+$. Demonstrate that AgCl precipitates from solution \& calculate the weight of AgCl that precipitate ($Y=1, \mathrm{Ksp}$ of $\mathrm{AgCl}=10-9.75, \mathrm{MW}$ of $\mathrm{NaCl}=58.443$) Solution $\mathrm{NaCl} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}$
$\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{AgCl}$ (which precipitates)
$\mathrm{n} \mathrm{NaCl}=\mathrm{n} \mathrm{Cl}=50.0 / 85.443=8.55 \times 10^{-3} \mathrm{~mol}$ $I A P=[C I][A g]=8.55 \times 10^{-3} \times 10^{-3}=10^{-5.067}$
IAP $>\mathrm{Ksp} \rightarrow$ supersaturation $\rightarrow \mathrm{AgCl}$ precipitate Let $x=n A g C l$ that precipitate. At equilibrium:
$[\mathrm{Ag}+]=10^{-3}-\mathrm{x},[\mathrm{Cl}-]=8.55 \times 10^{-3}-\mathrm{x}$
$\left(10^{-3}-x\right)\left(8.55 \times 10^{-3}-x\right)=10^{-9.75} \rightarrow X=10^{-3}$
$[\mathrm{Ag}+]=10^{-3}-10^{-3}=0$
[Cl-] $=8.55 \times 10^{-3}-10^{-3}=7.55 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$
All of the Ag is removed as AgCl precipitate COMMON ION EFFECT
Example a solution saturated with gypsum \& barite
$\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{Ca}^{2+}+\mathrm{SO}_{4}{ }^{-2}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{BaSO}_{4} \Leftrightarrow \mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-}$ ، Common ion is $\mathrm{SO}_{4}{ }^{2-}$
$\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{SO}_{4}{ }^{2-}\right]=\mathrm{Ksp} 1=10^{-4.6},\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}{ }^{2}\right]=\mathrm{Ksp} 2=10^{-10}$
$\left[\mathrm{SO4}^{-2}\right]=\frac{K s p 1}{\left[\mathrm{Ca}^{+2}\right]}=\frac{K s p 2}{\left[\mathrm{Ba}^{+2}\right]}$ At equilibrium

$$
\text { then }: \frac{[C a]}{[B a]}=\frac{K s p 1}{K s p 2}
$$

$\left[\mathrm{Ca}^{2+}\right] /\left[\mathrm{Ba}^{2+}\right]=25 \times 10^{4}$
If the ratio $=25 \times 10^{4} \rightarrow$ equilibrium
if the ratio $>25 \times 10^{4} \rightarrow$ [Ba] precipitate \& [Ca] dissolve,
if the value $<25 \times 10^{4} \rightarrow[\mathrm{Ca}]$ precipitate \& [Ba] dissolved

Example For requirement of electrical neutrality:
$2\left(\mathrm{Ba}^{2+}\right)+2\left(\mathrm{Ca}^{2+}\right)+\left(\mathrm{H}^{+}\right)=2\left(\mathrm{SO}_{4}{ }^{2-}\right)+\left(\mathrm{OH}^{-}\right)$ $\Sigma($ conc. $x \mid$ charge $\mid) p=\Sigma($ conc. $x \mid$ charge $\mid) r$ electrical neutrality $=$ conc \mathbf{x} charge
From the equations of dissociation constants

$$
\left(\mathrm{Ca}^{+2}\right)=\frac{K s p 1}{\gamma\left[\mathrm{SO}^{-2}\right]},\left(B a^{+2}\right)=\frac{K s p 2}{\gamma\left[S O 4^{-2}\right]}
$$

By Substituting in the mass balance equation \& dropping the $\left[\mathrm{H}^{+}\right] \&\left[\mathrm{OH}^{-}\right]$, if $\mathrm{Y}=1.0$ we get:

$$
\begin{gathered}
2\left(\mathrm{SO}_{4}^{2-}\right)=2\left(\mathrm{Ba}^{+2}\right)+2\left(\mathrm{Ca}^{+2}\right) \\
\left(\mathrm{SO}_{4}^{2-}\right)=\frac{10^{4.6}}{\left[\mathrm{SO}_{4}^{2-}\right]}+\frac{10^{-10}}{\left[\mathrm{SO}_{4}^{-2}\right]}
\end{gathered}
$$

Then: $\left[\mathrm{SO}_{4}{ }^{2-}\right]=10-2.3 \mathrm{~mol} / \mathrm{L}$
The contribution of barite to the sulphate is negligible \rightarrow gypsum is able to force barite to precipitate when saturated solution of barite contact with gypsum \rightarrow barite replace gypsum \& anhydrite
Barite precipitates as both minerals dissovle \& this process continues until the $[\mathrm{Ca} 2+] /[\mathrm{Ba} 2+] \approx 25 \times 10^{4}$ as required by equilibrium

- Replacement of minerals occur due to introduction of a common ion into the environment force the solution to become supersaturated with respect to the less soluble compound, \& The more soluble compound is replaced by the less soluble one
Example Predict the outcome of reactions that occur when a solution having $\left[\mathrm{Cd}^{2+} / \mathrm{Pb}^{2+}\right]=25$ (equliperum) come in contact with a rock containing galena PbS , Will additional galena precipitate, or dissolve? Will CdS precipitate? \& What will be ratio of $\left[\mathrm{Cd}^{2+} / \mathrm{Pb}^{2+}\right]$ in the solution after equilibrium? (Ksp : $\mathrm{CdS}=10^{-27}, \mathrm{PbS}=10^{-27.5}$)
$\mathrm{CdS} \rightarrow \mathrm{Cd}^{2+}+\mathrm{S}^{-2}, \mathrm{Ksp}=10-27$
$\mathrm{PbS} \rightarrow \mathrm{Pb}^{2+}+\mathrm{S}^{-2}, \mathrm{Ksp}=\mathrm{PbS}=10-27.5$
$\left[\mathrm{S}^{-2}\right]=10-27 /\left[\mathrm{Cd}^{2+}\right]=10-27.5 /\left[\mathrm{Pb}^{2+}\right]$
$\left[\mathrm{Cd}^{2+}\right] /\left[\mathrm{Pb}^{2+}\right]=10-27 / 10-27.5=3.16$
Ratio of solution (25) > Ratio at equilibrium (3.16)
The solution is supersaturated with respect to $\mathrm{Cd}^{2+} \&$ Undersaturated with respect to Pb^{2+}
So: PbS dissolved \& CdS Precipitate according to the following reactions

$$
\begin{aligned}
& \mathrm{PbS}_{(\mathrm{s})} \rightarrow \mathrm{Pb}^{2+}(\mathrm{aq})+\mathrm{S}^{-2}(\mathrm{aq}) \\
& \mathrm{Cd}^{2+}(\mathrm{aq})
\end{aligned}+\mathrm{S}^{-{ }^{2}(\mathrm{aq})} \rightarrow \mathrm{CdS}(\mathrm{~s})
$$

- Supersaturation of solutions with respect to a specific compound result from:
I. Introduction of a common ion
II. Change in pH (precipitation of amorphous)
III. Evaporative concentration of water
IV. Temperature-variation: solubility increase with rising T (Except for carbonates, decrease) ACTIVITIES \& CONCENTRATIONS
(يختل التركبز الفعال Activity عن النزكيز Concretion لوجود ايونات (تأثير الايونات على بغضها يقلل من نشاطها (-ve+, ve)
- The ions in solution don't interfere with each other, but holds true only for extremely diluted solutions
- Ions of opposite charges in a solution interact with each other, so the activities of the ions are lower than their actual concentrations
- The interaction among ions is a function of: concentration, charges, \& size, \& all of that is summarized in Debye-Hückel theory
- Debye-Hückel theory: concentrations \& charges of ions in solution are expressed by ionic strength (I)

$$
I=\frac{1}{2} \Sigma m z^{2}
$$

\mathbf{z} : is a charge if an ion, \mathbf{m} : concentration in mol/L From 0.001 to 0.1 in rivers \& lakes, 0.7 in seawater, \& up to 5 in brines

- A full chemical analysis is needed to calculate the ionic strength for a given body of water
I. The ppm conc are converted to moles

$$
m o l=\frac{p p m(o r m g)}{1000 * M w}
$$

II. $\mathrm{H}^{+} \& \mathrm{OH}^{-}$reported if the solution is either highly acidic or basic, then they should be considered
III. SiO_{2} is neutral it does not contribute to I
IV. Carbonates reported as HCO_{3}^{-}(dominant carbonate species at pH $=6.35-10.3$)

EXAMPLE Calculate the ionic strength

| Ions | Con
 $[\mathrm{ppm}]$ | Mw
 $[\mathrm{g} / \mathrm{mol}]$ | Con
 $[\mathrm{m}]$ | ζ^{2} | |
| :---: | :---: | :---: | :---: | :---: | :---: | $\mathrm{~m} \mathrm{x}^{2}$

$\mathrm{I}=1 / 2 \Sigma\left(\mathrm{mz}^{2}\right)=1 / 2 x 0.00872 \approx 0.0044$
Example Find the ionic strength for a 0.1 mol of solution of MgCl_{2}

$$
\begin{gathered}
\mathrm{MgCl}_{2} \rightarrow \mathrm{Mg}^{2+}+2 \mathrm{Cl}^{-} \\
\mathrm{MggCl}^{2}=\mathrm{MMg}^{2+}=0.1 \mathrm{~mol} / \mathrm{Kg} \\
2 \mathrm{MgCl}_{2}=\mathrm{Mcl}^{-}=0.2 \mathrm{~mol} / \mathrm{Kg} \\
\mathrm{I}=1 / 2 \mathrm{\Sigma}\left(\mathrm{Mxz}^{2}\right)=1 / 2\left(0.1 \times 2^{2}+0.2 \times(-1)^{2}\right)=0.6 / 2=0.3
\end{gathered}
$$

- The ionic strength is used in the DebyeHueckel theory to estimate the activity coefficient (Y):

$$
[X]=Y(X)
$$

$$
\text { If } \mathrm{I}<\mathbf{5 \times 1 0 ^ { - 3 }} \rightarrow-\log ^{\gamma}=A z^{2} I^{1 / 2}, \gamma=10^{-A z^{2} I^{1 / 2}}
$$

$$
\text { If } \mathrm{I}<0.1 \rightarrow-\log ^{\gamma}=\frac{A z^{2} I^{1 / 2}}{1+a B I^{1 / 2}}, \gamma=10^{-\left(\frac{A z^{2} I^{1 / 2}}{1+a I^{1 / 2}}\right)}
$$

If $\mathrm{I}=\mathbf{0 . 5} \boldsymbol{\rightarrow}-\log ^{\gamma}=A z^{2}\left[\frac{l^{1 / 2}}{1+I^{2}}-0.2 I\right]$
a: effective diameter of the ion

- The interference of the ions in solution causes the solubility to increase
Example solubility of CaSO_{4} is $5.6 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$, then Ca^{2+} concentration is ($(=0.0044, \gamma=0.759$)

$$
\left[\mathrm{Ca}^{2+}\right]=5.6 \times 10^{-\frac{1}{3}}
$$

$$
\left[\mathrm{Ca}^{2+}\right]=\mathrm{Y}\left(\mathrm{Ca}^{2+}\right)=5.6 \times 10^{-3} \mathrm{~mol} / \mathrm{L}
$$

$\left(\mathrm{Ca}^{2+}\right)=5.6 \times 10^{-3} / 0.759=7.38 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$

$$
\text { The increase in solubility }=\frac{(x)-[x]}{[x]}=32 \%
$$

SOLUBILITY OF CALCIUM CARBONATES

- Calcite Vs carbonic acid

$\mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{CO}_{3} \Leftrightarrow \mathrm{Ca}^{2+}+2 \mathrm{HCO}_{3}^{-}(\mathrm{pH}>8.9)$ The carbonic acid is in equilibrium with CO_{2} $\mathrm{H}_{2} \mathrm{CO}_{3(s)} \Leftrightarrow \mathrm{CO}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{CO}_{2(\text { aq) }} \Leftrightarrow \mathrm{CO}_{2(\mathrm{~g})}$ With increasing partial pressure of CO_{2}, led to the increase the activity of $\mathrm{H}_{2} \mathrm{CO}_{3}$ \& solubility of calcite

- Solubility of gas decreases with T, so in polar regions the rate of limestone precipitation < in tropical regions because CO_{2} more soluble in polar regions

كلما زاد تركيز ثاني اكسيد الكربون تكون الذائبية اعلى وكلما زادت T تكون الذائبية اقل

- The environments of limestone precipitation: shallow water in tropical regions
- The aquatic organisms decrease the partial pressure of CO_{2} during the day through the combination of $\mathrm{CO}_{2} \& \mathrm{H}_{2} \mathrm{O}$ to produce glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ which led to precipitation of CaCO_{3} (algae precipitate calcite through this mechanism \& produce thinly laminated calcite mounts called stromatolites)
- The deposition of speleothems in the form of stalactites \& stalagmites in the caves is also a response to changes in CO_{2} partial pressure
- Calcite Solubility as a function of CO_{2} pressure

One of the most common structure of calcium carbonate are Stalactites (from roof of the cave, down), Stalagmite (from floor of the cave, up) \& Column(Stalactite+Stalagmite)

Q1 Calculate the activities of $\mathrm{Ca}^{2+} \& \mathrm{~F}^{-}$\& the solubility of fluorite $\left(\mathrm{CaF}_{2}\right)$ in $\mathrm{mol} / \mathrm{L} \& \mathrm{~g} / 100 \mathrm{~L}$ in water at $25^{\circ} \mathrm{C}$ (assuming all $\mathrm{Y}=1, \mathrm{pKsp}=10.4, \& \mathrm{Mw}$ of $\mathrm{CaF}_{2}=78.1 \mathrm{~g} / \mathrm{mol}$)

$$
\begin{gathered}
\mathrm{CaF}_{2(s)} \Leftrightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{~F}^{-}(\mathrm{aq}) \\
(2 \mathrm{X})^{2} \times \mathrm{X}=\mathrm{Ksp}=10^{-10.4} \rightarrow \mathrm{X}=2.2 \times 10^{-4} \mathrm{~mol} / \mathrm{L} \\
{\left[\mathrm{Ca}^{2+}\right]=X=2.2 \times 10^{-4},\left[\mathrm{~F}^{-}\right]=2 \mathrm{X}=4.4 \times 10^{-4}} \\
\mathrm{SCaF}_{2}=2.2 \times 10^{-4} \mathrm{~mol} / \mathrm{L}=1.72 \mathrm{~g} / 100 \mathrm{~L}
\end{gathered}
$$

Q2 Calculate the ionic strengths of water in the following samples (A) \& (B)

	$\mathrm{A}[\mathrm{ppm}]$	$\mathrm{B}[\mathrm{ppm}]$	$\mathrm{Mw}[\mathrm{g} / \mathrm{mol}]$
$\mathrm{HCO}_{3}{ }^{-}$	50.0	121	61.0
$\mathrm{SO}_{4}^{{ }^{-}}$	4.8	28	96.1
Cl^{-}	1.5	17	35.5
$\mathrm{NO}_{3}{ }^{-}$	0.52	1.2	62.0
Ca^{2+}	14.1	39	40.1
Mg^{2+}	3.7	8.7	24.3
Na^{+}	2.9	8.2	23.0
$\mathrm{~K}^{-}$	0.5	1.4	39.1
Fe^{2+}	0.36	0.03	55.8
SiO_{2}	4.1	2.1	60.1

Using excel sheet

	$\mathrm{A}[\mathrm{ppm}]$	$\mathrm{Mw}[\mathrm{g} / \mathrm{mol}]$	$\mathrm{A}[\mathrm{mol} / \mathrm{L}]$	ζ^{2}	$\mathrm{~m}^{*} \zeta^{2}$
$\mathrm{HCO}_{3}{ }^{-}$	50	61	0.000819672	1	0.000819672
$\mathrm{SO}_{4}{ }^{-}$	4.8	96.1	$4.9948 \mathrm{E}-05$	4	0.000199792
Cl^{-}	1.5	35.5	$4.22535 \mathrm{E}-05$	1	$4.22535 \mathrm{E}-05$
$\mathrm{NO}_{3}{ }^{-}$	0.52	62	$8.3871 \mathrm{E}-06$	1	$8.3871 \mathrm{E}-06$
Ca^{2+}	14.1	40.1	0.000351621	4	0.001406484
Mg^{2+}	3.7	24.3	0.000152263	4	0.000609053
Na^{+}	2.9	23	0.000126087	1	0.000126087
$\mathrm{~K}^{-}$	0.5	39.1	$1.27877 \mathrm{E}-05$	1	$1.27877 \mathrm{E}-05$
Fe^{2+}	0.36	55.8	$6.45161 \mathrm{E}-06$	4	$2.58065 \mathrm{E}-05$
SiO_{2}	4.1	60.1	$6.82196 \mathrm{E}-05$	0	0

$\mathrm{I}=0.001625162$

	$\mathrm{B}[\mathrm{ppm}]$		$\mathrm{Mw}[\mathrm{g} / \mathrm{mol}]$	$\mathrm{B}[\mathrm{mol} / \mathrm{L}]$	ζ^{2}		$\mathrm{~m}^{*} \zeta^{2}$
$\mathrm{HCO}_{3}{ }^{-}$	121	61	0.001983607	1	0.001983607		
$\mathrm{SO}_{4}{ }^{-}$	28	96.1	0.000291363	4	0.001165453		
Cl^{-}	17	35.5	0.000478873	1	0.000478873		
$\mathrm{NO}_{3}{ }^{-}$	1.2	62	$1.93548 \mathrm{E}-05$	1	$1.93548 \mathrm{E}-05$		
Ca^{2+}	39	40.1	0.000972569	4	0.003890274		
Mg^{2+}	8.7	24.3	0.000358025	4	0.001432099		
Na^{+}	8.2	23	0.000356522	1	0.000356522		
$\mathrm{~K}^{-}$	1.4	39.1	$3.58056 \mathrm{E}-05$	1	$3.58056 \mathrm{E}-05$		
Fe^{2+}	0.03	55.8	$5.37634 \mathrm{E}-07$	4	$2.15054 \mathrm{E}-06$		
SiO_{2}	2.1	60.1	$3.49418 \mathrm{E}-05$	0	0		

I = 0.004682069
l increases with increasing concentrations of ions, so the concentration of ion in B is higher then A Q3 Calculate the activity coefficient $\left(\mathrm{Y}\right.$) of $\mathbf{M g}^{\mathbf{2 +}}$ in an aqueous solution have $\mathrm{I}=5 \times 10^{-2}$ at $15^{\circ} \mathrm{C}$ if $\mathrm{A}=$ $0.5000, \mathrm{~B}=0.3262, \mathrm{a}=8, \&-\log ^{\gamma}=\frac{A \mathrm{Z}^{2} I^{1 / 2}}{1+a I^{1 / 2}}$

$$
\begin{gathered}
\gamma=10^{-\left(\frac{0.5 \times 4 \times 0.224}{1+8 \times 0.326 \times 0.224}\right)}=10^{-0.283} \\
\gamma=0.52
\end{gathered}
$$

Q4 Calculate the ionic strength (m are in ppm)

Ca^{2+}	Mg^{2+}	Na^{+}	HCO_{3}^{-}	SO_{4}^{-2}	Cl^{-}
93.9	$\mathbf{2 2 . 9}$	19.1	344	85.0	9.0

	ppm	Mw	m	ζ^{2}	$m \times \zeta^{2}$
Ca^{2+}	93.9	40.1	0.002341646	4	0.009366584
Mg^{2+}	22.9	24.3	0.000942387	4	0.003769547
Na^{+}	19.1	23	0.000830435	1	0.000830435
$\mathrm{HCO}_{3}{ }^{-}$	344	61	0.005639344	1	0.005639344
$\mathrm{SO}_{4}{ }^{-2}$	85	96.1	0.000884495	4	0.003537981
Cl	9	35.5	0.000253521	1	0.000253521
$\mathrm{H}+$			$6.30957 \mathrm{E}-08$	1	$6.30957 \mathrm{E}-08$

| = 0.011698738
Q8 using previous question, Calculate the Slcalcite if $\left[\mathrm{CO}_{3}^{-2}\right]=3.4 \times 10^{-5}, \&$ What does SI indicate $\left(a=5 \times 10^{-8}\right.$, $\mathrm{Ksp}=4.27 \times 10^{-8}, \mathrm{~A}=0.5085, \mathrm{~B}=3281 \times 10^{4}$, equation in Q3)

$$
\mathrm{CaCO}_{3(\mathrm{~s})} \Leftrightarrow \mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}+\mathrm{CO}_{3}{ }^{2-}{ }_{(\mathrm{aq})}
$$

From Q3: $\left(\mathrm{Ca}^{2+}\right)=2.34 \times 10^{-3} \& Y($ as Q6 $)=0.650$
$\left[\mathrm{Ca}^{2+}\right]=2.34 \times 10^{-3} \times 0.65=1.52 \times 10^{-3}$

$$
\left[\mathrm{CO}_{3}{ }^{-2}\right]=3.4 \times 10^{-5}
$$

$I A P=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{CO}_{3}{ }^{2}{ }^{-}\right]=1.52 \times 10^{-3} \times 3.4 \times 10^{-5}=5.17 \times 10^{-8}$

$$
\text { SI }=\log (I A P / K s p)=0.079
$$

SI >0 (\& also IAP > Ksp), This mean that the solution is supersaturated with respect to calcite \& so calcite precipitate according to the following reaction:

$$
\mathrm{CO}_{3}{ }^{2-}\left(\mathrm{qq)}+\mathrm{Ca}^{2+}(\mathrm{qq}) \rightarrow \mathrm{CaCO}_{3(\mathrm{~s})}\right.
$$

STRATEGIES

(General Chemistry, 7Ed, Ch17: Solubility \& Simultaneous) CALCULATING OF Ksp \& SOLUBILITY

Strategy					
$\mathbf{A}_{(\mathrm{s})}$	\Leftrightarrow	$\mathbf{b B}_{(\mathrm{aq})}$	+	$\mathbf{c C}_{(\mathrm{aq})}$	
		bX		$\mathbf{c X}$	

$\mathrm{Ksp}=[\mathrm{aX}]^{\mathrm{a}}[\mathrm{bX}]^{\mathrm{b}}$ At equilibrium
IAP $=[\mathrm{aX}]^{\mathrm{a}}[\mathrm{bX}]^{\mathrm{b}}$ At any time
At $25{ }^{\circ} \mathrm{C}$, the solubility of $\mathrm{AgCl}=1.34 \times 10^{-5} \mathrm{M}$. Calculate the solubility product (Ksp) for AgCl

| AgCl |
| :---: | :---: | :---: | :---: |$\Leftrightarrow \underset{\mathrm{Ag}^{+}}{ }+\underset{\mathrm{Cl}^{-}}{ } \quad \mathrm{X}=1.34 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$,

The solubility of a salt $A_{2} B$ is found to be $3.0 \times 10^{-4} \mathrm{M}$. What is the value of Ksp ?

$\mathrm{A}_{2} \mathrm{~B}$	\Leftrightarrow	2 A	+	B
X		2 X		X
3×10^{-4}		6×10^{-4}		3×10^{-4}

The solubility of calcium fluoride CaF_{2} in pure water is $2.15 \times 10^{-4} \mathrm{M}$. What is the value of Ksp ?

CaF_{2}	\Leftrightarrow	Ca^{2+}	+	$2 \mathrm{~F}^{-}$
$1 \mathrm{~mol}^{2}$		1 mol		1 mol
2.15×10^{-4}		2.15×10^{-4}		4.3×10^{-4}

What is the molar solubility of Cul in water? Determine $\left[\mathrm{Cu}^{+}\right]$\&
[I^{-}] at equilibrium if $\mathrm{Ksp}=1.3 \times 10^{-12}$
$\mathrm{CuI} \Leftrightarrow \mathrm{Cu}^{+}+\mathrm{I}^{-} \quad \mathrm{Ksp}=\mathrm{X}^{2}=1.3 \times 10^{-12}$

Calculate the solubility for $\mathrm{BaC}_{2} \mathrm{O}_{4}\left(\mathrm{Ksp}=1.2 \times 10^{-7}\right)$

$$
\begin{array}{cccc}
\mathrm{BaC}_{2} \mathrm{O}_{4} \Leftrightarrow \mathrm{Ba}^{2+} & +\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} & \mathrm{Ksp}=\mathrm{X}^{2}=1.2 \times 10^{-7} \\
\mathrm{X} & & \mathrm{X} & \mathrm{X}
\end{array}
$$

Calculate the solubility for $\mathrm{Ag}_{3} \mathrm{PO}_{4}$ (K sp= $=1.8 \times 10^{-18}$)

$$
\begin{array}{cccc}
\mathrm{Ag}_{3} \mathrm{PO}_{4} & \Leftrightarrow & 3 \mathrm{Ag}^{+} & +\quad \mathrm{PO}_{4}{ }^{3-} \\
\mathrm{X} & & 3 \mathrm{X} & \mathrm{~K} p
\end{array}=27 \mathrm{X}^{4}=1.8 \times 10^{-18} .
$$

Calculate the solubility (in g / I) of CaF_{2} in water at $25^{\circ} \mathrm{C}$, if $\mathrm{Ksp}=$ $3.4 \times 10^{-11}, \mathrm{Mw}$ of $\mathrm{CaF}_{2}=78 \mathrm{~g} / \mathrm{mole}$

$$
\begin{array}{cccccc}
\mathrm{CaF}_{2} & \Leftrightarrow & \mathrm{Ca}^{2+} & +\quad 2 \mathrm{~F}^{-} & \mathrm{Ksp}=4 \mathrm{X}^{3}=3.4 \times 10^{-11} \\
1 \mathrm{~mol}^{2} & & 1 \mathrm{~mol} & 2 \mathrm{~mol} & \mathrm{X}=2.0 \times 10^{-4} \mathrm{~mol} / \mathrm{L} \\
\mathrm{X} & & \mathrm{X} & 2 \mathrm{X} & \mathrm{~S}=0.016 \mathrm{~g} / \mathrm{L}
\end{array}
$$

Calculate the solubility of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ in water if the solubility product is 1.08×10^{-23}

$$
\begin{array}{ccccc}
\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} & \Leftrightarrow & 3 \mathrm{Ca}^{2+} & +2 \mathrm{PO}_{4}{ }^{3-} & \mathrm{Ksp}=(3 \mathrm{X})^{3}(2 \mathrm{X})^{2}=108 \mathrm{X}^{5} \\
1 \mathrm{~mol} & 3 \mathrm{~mol} & 2 \mathrm{~mol} & =1.08 \times 10^{-23} \\
\mathrm{X} & & 3 \mathrm{X} & 2 \mathrm{X} & \mathrm{X}=10^{-5} \mathrm{~mol} / \mathrm{L}
\end{array}
$$

What is the solubility of PbCl_{2} in grams per 100.0 mL at $25^{\circ} \mathrm{C}$? $\mathrm{Ksp}=$
$1.7 \times 10^{-4}, \mathrm{Mw}$ of $\mathrm{PbCl}_{\mathbf{2}}=\mathbf{2 7 8 . 1 1} \mathrm{g} / \mathrm{mol}$
$\begin{array}{ccccc}\mathrm{PbCl}_{2} & \Leftrightarrow & \mathrm{~Pb}^{2+} & + & 2 \mathrm{Cl}^{-} \\ 1 \mathrm{~mol} & & 1 \mathrm{~mol} & \mathrm{Ksp}=(\mathrm{X})(2 \mathrm{X})^{2}=4 \mathrm{X}^{3}=1.7 \times 10^{-4} \\ \mathrm{X} & & \mathrm{X} & 2 \mathrm{Xol} & \mathrm{X}=0.035 \mathrm{~mol} / \mathrm{L} \\ \mathrm{X} & \mathrm{S}=9.71 \mathrm{~g} / \mathrm{L}=0.97 \mathrm{~g} / 100 \mathrm{~L}\end{array}$
The solubility of calcium sulfate $\left(\mathrm{CaSO}_{4}\right)$ is $0.67 \mathrm{~g} / \mathrm{L}$ calculate the
Ksp if Mw of CaSO_{4} is $163.2 \mathrm{~g} / \mathrm{mol}$
CaSO_{4}

1 mol $\stackrel{\mathrm{Ca}^{2+}}{ }$| 1 mol |
| :---: |
| X |
| X |

Calculate the solubility of copper hydroxide $\mathrm{Cu}(\mathrm{OH})_{2}$ in g / L if the
Ksp is $\mathbf{2 . 2 \times 1 0 ^ { - 2 2 }}$

$\mathrm{Cu}(\mathrm{OH})_{2}$	\Leftrightarrow	Cu^{2+}	$+\quad 2 \mathrm{OH}^{-}$	
1 mol		1 mol	1 mol	$\mathrm{Ksp}=4 \mathrm{X}^{3}=2.2 \times 10^{-22}$
X		X	2 X	$\mathrm{X}=3.8 \times 10^{-8}$

DETERMINING SOLUBILITY USING Ksp

Solubility are directly proportional to the Ksp In the comparing of salts with same number of ions, the more the Ksp the more the solubility, but if the number of ions in the salt are different you should be calculating the solubility (mostly
the higher content of ions the more the solubility)

Which of the following are more soluble?

- $\mathrm{Agl}\left(\mathrm{K}_{\mathrm{sp}} 10^{-16.1}\right)$, $\mathrm{CuI}\left(\mathrm{K}_{\mathrm{sp}} 10^{-11.9}\right)$, or $\mathrm{CaSO}_{4}\left(\mathrm{~K}_{\mathrm{sp}} 10^{-4.3}\right)$
- $\mathrm{Bi}_{2} \mathrm{~S}_{\mathbf{3}}\left(\mathrm{K}_{\mathrm{sp}} 10^{-73}\right), \mathrm{Ag}_{2} \mathrm{~S}\left(\mathrm{~K}_{\mathrm{sp}} \mathbf{1 0}^{-50}\right)$, $\mathrm{CuS}\left(\mathrm{K}_{\mathrm{sp}} 10^{-56}\right)$
$\mathrm{AgI}, \mathrm{CuI}, \& \mathrm{CaSO}_{4}$ all have the same number of ions (2)

$$
\text { So. } \mathrm{CaSO}_{4}>\mathrm{CuI}>\mathrm{AgI}
$$

$\mathrm{Bi}_{2} \mathrm{~S}_{3}$ (5ions), $\mathrm{Ag}_{2} \mathrm{~S}$ (3 ions), CuS (2 ions)
$\mathrm{Bi}_{2} \mathrm{~S}_{3}>\mathrm{Ag}_{2} \mathrm{~S}>\mathrm{CuS}$ (you need to calculate the solubility to make sure about result, solubility $\mathbf{1 0}^{-15}, 10^{-17}, 10^{-28.1}$ "respectively") COMMON ION EFFECT CALCULATIONS

$$
\begin{gathered}
\mathbf{A B} \Leftrightarrow \mathbf{A}+\mathbf{B}, \mathbf{C B} \Leftrightarrow \mathbf{C}+\mathbf{B} \\
\text { Common ion is } \mathbf{B} \\
{[B]=\frac{K s p 1}{[A]}=\frac{K s p 2}{[C]} \text { At equilibrium }} \\
\text { then: } \frac{[A]}{[B]}=\frac{K s p 1}{K s p 2}=L
\end{gathered}
$$

Ratio $=\mathrm{L} \rightarrow$ reaction at equilibrium
Ratio >L compound contain [A] precipitate Ratio < L \rightarrow compound contain [A] dissolved Concretion of a common ion = concentration of salt (calculate from original solution), \& the concentration of another ion = concentration of salt added to solution (from additional salt)

The molar solubility of PbF_{2} in $0.10 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ solution is 2.85 $\times 10^{-4} \mathrm{M}$. Calculate Ksp for PbF_{2} ?

$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$	\Leftrightarrow	$\begin{gathered} \mathrm{Pb}^{2+} \\ \mathrm{X} \end{gathered}$	+	$\begin{gathered} 2 \mathrm{NO}_{3}^{-} \\ 2 \mathrm{X} \end{gathered}$	
PbF_{2}	\Leftrightarrow	Pb^{2+}	+	$2 \mathrm{~F}^{-}$	[F^{-}] $=2 \times 2.85 \times 10^{-4}=5.7 \times 10^{-4}$
X		X		2X	تركيز الايون الإخر من الملح المضاف

at equliperum $\mathrm{Ksp}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2}=3.25 \times 10^{-8}$
What is the solubility of PbI_{2} in 0.20 M NaI ? $\left(\mathrm{Ksp}=9.8 \times 10^{-9}\right)$

$$
\begin{array}{ccccc}
\mathrm{NaI} & \Leftrightarrow & \mathrm{Na}^{2+} & +\mathrm{I}^{-} & {[\mathrm{NaI}]=\left[\mathrm{I}^{-}\right]=0.20 \mathrm{M}} \\
\mathrm{PbI}_{2} & \Leftrightarrow & \mathrm{~Pb}^{2+} & 2 \mathrm{I}^{-} & \mathrm{Ksp}=\mathrm{X} \times(0.20)^{2} \\
\mathrm{X} & & \mathrm{X} & 2 \mathrm{X} & \rightarrow \mathrm{X}=2.45 \times 10^{-7}
\end{array}
$$

calculate solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ in the following ($\mathrm{Ksp}=1.1 \times 10^{-12}$)

- pure water?

$\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ X	\Leftrightarrow	$2 A g^{+}$ $2 X$	+	$\begin{gathered} \mathrm{CrO}_{4}{ }^{2-} \\ \mathrm{X} \end{gathered}$	$\begin{gathered} \mathrm{Ksp}=4 \mathrm{X}^{3}=1.1 \times 10^{-12} \\ \mathrm{X}=6.5 \times 10^{-5} \end{gathered}$
- 0.10M AgNO_{3} ?					
AgNO_{3}	\Leftrightarrow	Ag^{+}	+	$\mathrm{NO}_{3}{ }^{-}$	$\left[\mathrm{AgNO}_{3}\right]=\left[\mathrm{Ag}^{+}\right]=$
X		X		X	0.10M
$\mathrm{Ag}_{2} \mathrm{CrO}_{4}$	\Leftrightarrow	$2 \mathrm{Ag}^{+}$	+	$\mathrm{CrO}_{4}{ }^{\text {- }}$	$\mathrm{Ksp}=(0.10)^{2}(\mathrm{X})$
X		0.10		X	$\mathrm{X}=1.1 \times 10^{-10}$
- $0.10 \mathrm{M} \mathrm{Na} \mathrm{CrO}_{4}$?					
$\mathrm{Na}_{2} \mathrm{CrO}_{4}$	\Leftrightarrow	$2 \mathrm{Na}^{+}$		$\mathrm{CrO}_{4}{ }^{-}$	$\left[\mathrm{AgNO}_{3}\right]=\left[\mathrm{Ag}^{+}\right]=$
X		X		X	0.10M
$\mathrm{Ag}_{2} \mathrm{CrO}_{4}$	\Leftrightarrow	$2 \mathrm{Ag}^{+}$	+	$\mathrm{CrO}_{4}{ }^{\text {- }}$	$\mathrm{Ksp}=(0.10)(2 \mathrm{X})^{2}$
X		2X		0.10	$\mathrm{X}=1.66 \times 10^{-6}$

adding $\mathrm{CrO}_{4}{ }^{-}$increase the solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ more than $\mathrm{Ag}^{+}, \&$ the solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ are higher in the pure water (good example of the common ion effect)

PREDICTING IF PRECIPITATE WILL FORM

$1^{\text {st }}$. Calculate the concentrations in mixture $2^{\text {nd }}$. Calculate IAP, \& Compare IAP \& Ksp			
IAP vs Ksp SI			
supersaturation	IAP > Ksp	+ve	precipitation
Saturation	$I A P=K s p$	0	Equilibrium
Undersaturation	IAP < Ksp	-ve	Dissolution
$S I=\log ^{\frac{I A P}{K s p}}$			

If 2.00 mL of 0.200 M NaOH are added to 1.00 L of $0.100 \mathrm{CaCl}_{2}$, $\mathrm{Ca}(\mathrm{OH})_{2}$ will precipitate? Ksp for $\mathrm{Ca}(\mathrm{OH})_{2} 8 \times 10^{-6}$

NaOH	\Leftrightarrow	Na^{+}	$+\quad \mathrm{OH}^{-}$		
4×10^{-4}				4×10^{-4}	$\mathrm{IAP}=0.1 \times\left(4 \times 10^{-4}\right)^{2}$
CaCl_{2}	\Leftrightarrow	Ca^{2+}	$+\quad 2 \mathrm{Cl}^{-}$	$\mathrm{IAP}=1.6 \times 10^{-8}$	
0.100		0.100			$\mathrm{IAP}<\mathrm{Ksp}$
$\mathrm{Ca}(\mathrm{OH})_{2}$	\Leftrightarrow	Ca^{2+}		$2 \mathrm{OH}^{-}$	$\mathrm{Ca}(\mathrm{OH})_{2}$ will dissolved
		0.100	4×10^{-4}	into ions	

Will a precipitate of PbI_{2} form? 100.0 mL of $0.0500 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ mixed with 200.0 mL of 0.100 M Nal ? $\left(\mathrm{Ksp}_{\mathrm{Pbl}}^{2} \mathbf{~}=9.8 \times 10^{-9}\right)$

$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$	\Leftrightarrow	$\mathrm{~Pb}^{2+}$	$+\mathrm{NO}_{3}{ }^{-}$		
$5 \times 10^{-3} \mathrm{~mol}$		$5 \times 10^{-3} \mathrm{~mol}$			$\mathrm{IAP}=5 \times 10^{-3}(0.02)^{2}$
NaI	\Leftrightarrow	Na^{2+}	+	I^{-}	$=2 \times 10^{-6}$
0.02 mol				0.02 mol	$\mathrm{IAP}>\mathrm{Ksp}$
PbI_{2}	\Leftrightarrow	$\mathrm{~Pb}^{2+}$		$2 \mathrm{I}^{-}$	$\mathrm{PbI} \mathrm{I}_{2}$ will
		5×10^{-3}		0.02	precipitate

Suppose you mix 100.0 mL of $0.200 \mathrm{M} \mathrm{BaCl}_{2}$ with 50.0 mL of $0.0300 \mathrm{Na}_{2} \mathrm{SO}_{4}$. BaSO_{4} precipitate? (Ksp of BaSO_{4} is 1.1×10^{-10})

BaCl_{2}	\Leftrightarrow	Ba^{2+}	+	$2 \mathrm{Cl}^{-}$	$\begin{aligned} \text { IAP }= & 0.020 \times 0.015=3 \times 10^{-4} \\ & \rightarrow \text { IAP }>\text { Ksp } \end{aligned}$
0.020		0.020			
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	\Leftrightarrow	2Na+	+	$\mathrm{SO}_{4}{ }^{\text {2- }}$	BaSO_{4} will precipitate
0.015				0.015	according to the following
BaSO_{4}	\Leftrightarrow	Ba^{2+}		$\mathrm{SO}_{4}{ }^{2-}$	equation
		0.020		0.015	$\mathrm{Ba}^{2+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}{ }^{-{ }^{-}}{ }_{\text {(aq) }} \rightarrow \mathrm{BaSO}_{4}$

Will a precipitate of BaSO_{4} form if 50.0 mL of $1.0 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ is mixed with 86.4 mL of $0.494 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{Ksp}=1.1 \times 10^{-10}$

$\mathrm{Ba}(\mathrm{OH})_{2}$	\Leftrightarrow	Ba^{2+}	+	$2 \mathrm{OH}^{-}$	$\left[\mathrm{Ba}(\mathrm{OH})_{2}\right]=\mathrm{MV}=$ 1 mol
	1 mol			$50.0 \times 10^{-3} \mathrm{~L} \times 1.0 \mathrm{~mol} / \mathrm{L}=$	
0.050		0.050			0.050 mol
$\mathrm{H}_{2} \mathrm{SO}_{4}$	\Leftrightarrow	$2 \mathrm{H}^{+}$	+	$\mathrm{SO}_{4}{ }^{2-}$	$\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=\mathrm{MV}=86.4 \times 10^{-3} \mathrm{~L} \times$
1 mol				1 mol	$0.494 \mathrm{~mol} / \mathrm{L}=0.043 \mathrm{~mol}$
0.043				0.043	$I \mathrm{AP}=0.050 \times 0.043=$
BaSO_{4}	\Leftrightarrow	Ba^{2+}	$\mathrm{SO}_{4}{ }^{2-}$	$2.15 \times 10^{-3} \rightarrow \mathrm{IAP}>\mathrm{Ksp}$	
		0.050	0.043	BaSO_{4} precipitate	

ANOTHER EQUATIO
$\Sigma([x] \times \mid$ charge $\mid) p=\Sigma([x] \times \mid$ charge $\mid) r$
$(A)=\frac{K s p 1}{\gamma[B]},(C)=\frac{K s p 2}{\gamma[B]}$
$I=\frac{1}{2} \Sigma M z^{2}=\frac{1}{2} \Sigma m z^{2}$
$p p m=m g=\frac{m o l}{M w x 1000}$
If $\mathrm{I}<5 \times 10^{-3}:-\log ^{\gamma}=A z^{2} I^{1 / 2}, \gamma=10^{-A z^{2} I^{1 / 2}}$
If $\mathrm{I}<0.1:-\boldsymbol{\operatorname { l o g }}^{\gamma}=\frac{A z^{2} I^{1 / 2}}{1+a B I^{1 / 2}}, \gamma=10^{-\left(\frac{A z^{2} I^{1 / 2}}{1+a I^{1 / 2}}\right)}$
If $\mathrm{I}=0.5:-\log ^{\gamma}=A z^{2}\left[\frac{I^{1 / 2}}{1+I^{2}}-0.2 I\right]$
Increase in Solubility $=\frac{(x)-[x]}{[x]}$

Chapter Seven
 Thermodynamics

- The observation of the transformation of mechanical energy into heat lead to development of thermodynamics science
- Joule demonstrated that expenditure of amount of work always produced the same amount of heat
- Principle of conservation of energy: when work is done, heat energy is consumed
- Thermodynamic deal with physical \& chemical changes of matter due to work \& heat flow (thermo = heat; dynamics = movement)
- Real rocks are end products of long complex processes, that cannot exactly be duplicated in the lab, but we can use thermodynamic measurements \& reasoning to investigate nature of these processes THERMODYNAMICS \& SYSTEMS
- Thermodynamics describes the world in terms of certain measurable properties of matter such as volume, $\mathrm{P}, \mathrm{T}, \& \mathrm{X}$ (composition)
- System: any part of the universe under consideration, \& The rest is the surrounding

System	Transfer Energy	Transfer Matter
Open	\checkmark	\checkmark
Closed	\checkmark	X
Isolated	\times	X
Variables of a systems		
Intensive variables	Amounts of materials Independent P, T, p, potential, activity, fugacity	
Extensive variables	Depend on the amount of material volume, mass, energy, composition	
Composition of a system is expressed in the following		
Phase	Homogenous part of a system physically distinct \& separable mechanically. It can be solid, liquid, or gas. (e.g. quartz crystal)	
Component	Chemical constituent, described of phase composition (SiO_{2} oxide)	

- The number of components, phases, \& degrees of freedom are related by the Gibbs Phase Rule
(Degree of freedom) $F=C-P+2(P, T)$

LAWS OF THERMODYNAMICS

- $\mathbf{0}^{\text {th }}$ Law: 2 bodies are in thermal equilibrium have the same T, \& any 2 bodies in thermal equilibrium with a third body are themselves in equilibrium
- $\quad 1^{\text {st }}$ law: In reversible reaction $\Delta E=q-w$ $d E=d q-d w$ (in small incremental changes)
ΔE : The increase in internal energy of a system \mathbf{q} : heat flows from the surrounding, -w: work done by the system
- The most common form of work that can be done by a system is to expand against a constant pressure

$$
\Delta E=\Delta q-p \Delta V
$$

$d E=d q-d p \times d v$ (in small incremental changes)

- Enthalpy $(\mathbf{\Delta H})$: function of state of the system

$$
\Delta H=E+P V=q-P V
$$

- $\Delta \mathrm{H}$ at constant P is equal to heat absorbed by the system during that change ($\Delta \mathrm{H}=\Delta \mathrm{q}$)
- Enthalpy values for elements \& compounds are defined at STP (for any Element $=0$ such as $\mathrm{O}_{2}, \mathrm{~N} .$.)
- Enthalpy of formation $\left(\mathbf{H}_{\mathbf{f}}\right)$: heat absorbed or given off by chemical reactions in the compounds, ions, \& molecules form from elements in the standard state
- Heats of Reaction $\left(\mathrm{H}^{0} \mathrm{R}\right)$ in $\mathrm{Kcal} / \mathrm{mol}$

$$
\Delta H_{R}^{\circ}=\Sigma \Delta \dot{H}_{f_{\text {product }}^{\circ}}^{\circ}-\Sigma \Delta H_{f_{\text {reactant }}^{\circ}}
$$

- Calorie: the amount of heat required to raise the T of a 1 g of water from 14.5 to $15.5^{\circ} \mathrm{C}$

Example

$$
2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

$$
\begin{array}{llll}
\Delta \mathrm{H}_{\mathrm{f}} & 0 & 0 & -57.8 \mathrm{Kcal}
\end{array}
$$

$\Delta H^{0_{R}}=2(-57.80)-0=-115.6 \mathrm{Kcal}$,Exothermic
$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \quad 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
$\mathrm{H}_{\mathrm{f}} \quad-68.32 \quad-57.8 \mathrm{Kcal}$
$\mathrm{H}_{\mathrm{R}}=-57.80-68.32=+10.25 \mathrm{Kcal}$, Endothermic

- When heat is added to a solid, liquid, or a gas T increases. This observation can be stated as:

$$
\Delta q=C \Delta T
$$

q : heat added, T : T in Kelvin, C : A heat capacity

$$
C=a+\left(b \times 10^{-3}\right) T+\left(c \times 10^{-6}\right) T^{2}
$$

$\mathbf{a}, \mathbf{b}, \mathbf{c}$: constants derived by fitting an algebraic equation to experimentally determined data in coordinates of C \& T
$\Delta H-\Delta H .=a(T-T)+.\frac{b \times 10^{-3}}{2}\left[T^{2}-T .^{2}\right]+\frac{c \times 10^{-6}}{3}\left[T^{3}-T .^{3}\right]$

- $\mathbf{2 n d}^{\text {nd }}$ law: In reversible reaction

$$
d S=\frac{d q}{T} \text { or } \Delta S=\frac{\Delta q}{T}
$$

dS: entropy of a system, dq: heat, \boldsymbol{T} :absolute temperature

Reaction	Spontaneous	$\Delta \mathbf{S S}$
Reverseable	No	$\mathrm{dS}=\mathrm{dq} / \mathrm{T}$
Irreversible	Yes	$\mathrm{dS}>\mathrm{dq} / \mathrm{T}$

- Efficiency of steam engines lead to the development of the concept of Entropy
- A certain amount of enthalpy (heat) is converted to entropy (S). not to work
- 3rd law: The heat capacities of pure crystalline substances become 0 at absolute 0: $\mathbf{d S}=\mathbf{0}$
${ }_{0} \int^{T} d S=C_{0} \int^{\top} d T / T$
$\Delta S O_{R}=\Sigma n \mathbf{S O}_{f}$ Products $-\Sigma n S O_{f}$ Reactants

	$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$	\rightarrow	$2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
SO_{f}	$16.71 \mathrm{cal} /{ }^{\circ}$		$45.10 \mathrm{cal} /{ }^{\circ}$
	45.10-16.7		$23.39 \mathrm{cal} /{ }^{\circ}$

Vapor molecules are more randomly distributed

THE GIBBS FREE ENERGY

- The increase ΔH in reversible reaction is lowered because certain amount of H consumed by S

$$
\Delta G=\Delta H-T \Delta S
$$

$\Delta G^{\circ}{ }_{R}=\Delta H^{\circ}{ }_{R}-T \Delta S^{\circ}{ }_{R}=\Sigma n \Delta G^{\circ}{ }_{\text {product }}-\Sigma n \Delta G^{\circ}{ }_{\text {reactant }}$

- The standard Gibbs free energy of formation of a compound $\left(G^{\circ}\right)$ is the change in the free energy of the reaction by which it forms from the elements

Reaction	q (heat)	w	$\Delta \mathrm{H}$	$\Delta \mathrm{G}$	equ. Direction
Endothermic	+ve (absorb)		$+$		\rightarrow
Exothermic	-ve (release)	+		+	\leftarrow
Equliperum	0 (norxn)	0	0	0	\leftrightarrow
$\Delta G=\Delta G^{\circ}+R \boldsymbol{T} \boldsymbol{l n}^{K}$					
$K=10^{-\left(\frac{\Delta G^{\circ}}{1.364}\right)} \text { in cal, } K=10^{-\left(\frac{\Delta G^{\circ}}{5.709}\right)} \text { in Jol }$					

- Van't Hoff Equation: to calculate K at other T

$$
\begin{gathered}
\ln ^{K}-\ln ^{K^{\circ}}=\left(\frac{-\Delta H^{\circ}}{R}\right)\left(\frac{1}{T}-\frac{1}{T^{\circ}}\right) \\
\log ^{K}-\log ^{K^{\circ}}=\left(\frac{-\Delta H^{\circ}}{2.3025 R}\right)\left(\frac{1}{T}-\frac{1}{298.15}\right) \\
R=1.987 \mathrm{cal} / \mathrm{mol}{ }^{\circ} \mathrm{K}
\end{gathered}
$$

EXAMPLE calculate the solubility of amorphous silica between $0^{\circ}-100^{\circ} \mathrm{C}$, which reacts with water to form silicic acid according to the following equation

$$
\mathrm{SiO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{4} \mathrm{SiO}_{4}
$$

$\Delta \mathbf{G}^{\circ}{ }_{\mathrm{R}}=\Sigma \mathrm{n} \Delta \mathrm{G}^{\circ}{ }_{\text {product }}-\Sigma \mathrm{n} \Delta \mathbf{G}^{\circ}{ }_{\text {reactant }}=4.044 \mathrm{kcal}$ $K^{\circ}=10-\Delta G^{\circ} R / 1.36=10-2.96$
$\Delta \mathrm{H}^{\mathrm{O}_{\mathrm{R}}}=\Sigma \mathrm{nH}^{\mathrm{f}} \mathrm{f}_{\text {Products }}-\Sigma \mathrm{nH}^{\mathrm{O}_{\mathrm{f}} \text { Reactants }}=+3.47 \mathrm{kcal}$
the reaction is endothermic, so K increase with T

$$
\begin{gathered}
\log ^{K}--2.96=\left(\frac{3.47 \times 10^{3}}{2.3025 \times 1.987}\right)\left(\frac{1}{T}-\frac{1}{298.15}\right) \\
\text { At T }=273=0.00366 \rightarrow K_{0^{\circ}}=10^{-3.2} \\
\text { At T }=373=0.00268 \rightarrow K_{100^{\circ}}=10^{-2.45} \\
\text { solubility at } 100^{\circ} \mathrm{C} \text { is higher }(\mathrm{S} \text { increases with } \mathrm{T})
\end{gathered}
$$

EXAMPLE calculate $\Delta \mathrm{H}, \Delta \mathrm{S} \& \Delta \mathrm{G}$ when fluorite $\left(\mathrm{CaF}_{2}\right)$ dissolves in water in the standard state. Use the results to calculate the K at STP

	$\mathrm{CaF}_{2} \Leftrightarrow$	Ca^{2+}	+ 2 F	
H^{f}	- 1219.6	-542.8 kJ/mol	-323.6 kJ/mol	
SO_{f}	68.9	-53.1 J/mol ${ }^{\circ} \mathrm{C}$	-26.6 J/mol/deg	
$\mathrm{G}^{\circ}{ }_{\mathrm{f}}$	-1167.3	-553.6 kJ/mol	-278.8 kJ/mol	
$\Delta H^{0} \mathrm{R}_{\mathrm{R}}=+11.6 \mathrm{~kJ} / \mathrm{mol}$				
$\Delta S^{0}{ }_{R}=-149.6 \mathrm{~J} / \mathrm{mol} / \mathrm{deg}$				
$\Delta G=\Delta H-T \Delta S$				
$\Delta G^{0}{ }_{R}=+56.1 \mathrm{~kJ} / \mathrm{mol}$				
LogK=10-G/5.709 $\rightarrow \mathrm{K}=1.58 \times 10^{-10}$				
($\Delta \mathrm{G}$ can be calculated using $\Delta \mathbf{G}^{0_{f}}$ values from tables of $\Delta G 0_{i}\left(\right.$ such as $\left.\Delta H^{\circ} \& \Delta S^{\circ}\right)$				
Le Chatelier's rules (from chemistry 102,ch17)				
Changes			Shift of Equilibrium	
Incr	ease Concent	ation of product	Toward Reactants	\leftarrow
Incre	ase Concent	ation of reactant	Toward product	\rightarrow
	Increase (decrease	pressure volume)	Toward a fewer moles of gasses	
	Increase te (of endotherm	mperature ic reactions)	Toward product	\rightarrow
	Increase tem (of exotherm	perature of reactions)	Toward reactant	\leftarrow

CHEMICAL WEATHERING

- Types of chemical weathering:
I. Congruent: formed by ions without another compound (e.g. Calcite dissolution)
II. Incongruent: formed by another compounds as well as ions \& molecules (e.g. Al-silicates)
- All chemical weathering are redox reactions
- The products of weathering include: new minerals, ions \& molecule, \& Unreactive grains (zircon, quartz)

(1) K-feldspar \Leftrightarrow kaolinite

$2 \mathrm{KAlSi}_{3} \mathrm{O}_{8}+9 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{H} \Leftrightarrow \mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{5}(\mathrm{OH})_{4}+2 \mathrm{~K}^{+}+4 \mathrm{H}_{4} \mathrm{SiO}_{4}$
 $\mathrm{K}=\left[\mathrm{H}_{4} \mathrm{SiO}_{4}\right]^{4}\left[\mathrm{~K}^{+}\right]^{2} /\left[\mathrm{H}^{+}\right]^{2}=10 \cdot(7.103 / 1.364)=10 \cdot 5.21$ $4 \log \left[\mathrm{H}_{4} \mathrm{SiO}_{4}\right]+2 \log \left[\mathrm{~K}^{+}\right]-2 \log \left[\mathrm{H}^{+}\right]=-5.21$ $\log \left[\mathrm{K}^{+}\right] /\left[\mathrm{H}^{+}\right]=-2 \log \left[\mathrm{H}_{4} \mathrm{SiO}_{4}\right]+(-2.61)$
(2) Kaolinite \Leftrightarrow Gibbsite
$\mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{5}(\mathrm{OH})_{4(\mathrm{~s})}+5 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Leftrightarrow 2 \mathrm{Al}(\mathrm{OH})_{3(\mathrm{~s})}+2 \mathrm{H}_{4} \mathrm{SiO}_{4(\mathrm{aq})}$ $\Delta G^{0}=+12.76 \mathrm{kcal} \rightarrow \mathrm{K}=10^{-4.68}$ $\log \left[\mathrm{H}_{4} \mathrm{SiO}_{4}\right]=-4.68$

(3) Microclline \Leftrightarrow Muscovite

$\mathrm{KAISi}_{3} \mathrm{O}_{8(\mathrm{~s})}+12 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}+2 \mathrm{H}^{+}{ }_{(\mathrm{qq})} \Leftrightarrow \mathrm{KAl}_{3} \mathrm{Si}_{3} \mathrm{O}_{12}(\mathrm{OH})_{2(\mathrm{~s})}+$ $2 \mathrm{~K}^{+}{ }_{(\mathrm{qq})}+6 \mathrm{H}_{4} \mathrm{SiO}_{4}(\mathrm{aq})$
$\Delta G^{0}{ }_{R}=+16.184 \mathrm{kcal} \rightarrow \mathrm{K}=10^{-5.93}$
$\log \left[\mathrm{K}^{+}\right] /\left[\mathrm{H}^{+}\right]=-3 \quad \log \left[\mathrm{H}_{4} \mathrm{SiO}_{4}\right] \quad-\quad 5.93$
(4) Muscovite \Leftrightarrow Kaolinite
$\mathrm{KAl}_{3} \mathrm{Si}_{3} \mathrm{O}_{12}(\mathrm{OH})_{2(\mathrm{~s})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+2 \mathrm{H}^{+}{ }_{(\mathrm{aq})} \Leftrightarrow+2 \mathrm{~K}^{+}(\mathrm{aq})+$ $\mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{5}(\mathrm{OH})_{4(\mathrm{~s})}$
$\Delta G^{0}{ }_{R}=-11.059 \mathrm{kcal} \rightarrow \mathrm{K}=10^{-4.05}$ $\log \left[\mathrm{K}^{+}\right] /\left[\mathrm{H}^{+}\right]=+4.05$ $\log \left[\mathrm{K}^{+}\right] /\left[\mathrm{H}^{+}\right]=4.05$
(5) Muscovite \Leftrightarrow Gibbsite
$\mathrm{KAl}_{3} \mathrm{Si}_{3} \mathrm{O}_{12}(\mathrm{OH})_{2}(\mathrm{~s})+9 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{H}^{+}(\mathrm{aq}) \Leftrightarrow 2 \mathrm{Al}(\mathrm{OH})_{3(\mathrm{~s})}+\mathrm{K}^{+}(\mathrm{aq})$ $+3 \mathrm{H}_{4} \mathrm{SiO}_{4(\mathrm{aq})}$
$\Delta \mathbf{G O}_{\mathrm{R}}=+13.603 \mathrm{kcal} \rightarrow \mathrm{K}=10^{-9.97}$
$\log \left[\mathrm{K}^{+}\right] /\left[\mathrm{H}^{+}\right]=-3 \log \left[\mathrm{H}_{4} \mathrm{SiO}_{4}\right]-9.97$
$\log \left[\mathrm{K}^{+}\right] /\left[\mathrm{H}^{+}\right] \quad=\quad-3 \quad \log \left[\mathrm{H}_{4} \mathrm{SiO}_{4}\right] \quad-\quad 9.97$
(6) Amorphous Silica \Leftrightarrow Silicic Acid
$\mathrm{SiO}_{2(\mathrm{~s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Leftrightarrow \mathrm{H}_{4} \mathrm{SiO}_{4(\mathrm{aq})}$ $\Delta \mathbf{G}^{{ }^{2}}=+3.604 \mathrm{kcal} \rightarrow \mathrm{K}=10^{-2.64}$

PROBLEMS

Q1 Calculate the enthalpy change \& the standard free energy change when fluorite $\left(\mathrm{CaF}_{2}\right)$ dissolves in water in the standard state

- $\Delta H_{f}^{\circ}: C a F_{2_{(s)}}=-291.5, C a_{(a q)}^{2+}=-129.74, F_{(a q)}^{-}=-79.5$
- $\Delta G_{f}^{\circ}: \operatorname{CaF}_{2_{(s)}}=-279.0, C a_{(a q)}^{2+}=-132.3, F_{(a q)}^{-}=-132.8$

$$
\mathrm{CaF}_{2_{(s)}} \leftrightarrow C a_{(a q)}^{2+}+2 F_{(a q)}^{-}
$$

$\Delta H_{R}^{\circ}=(-159-129.74)-(-291.5)=+2.76 \mathrm{Kcal}$ $\Delta G_{R}^{\circ}=(-132.3-132.8)-(-279.0)=+13.9 \mathrm{Kcal}$
Q2 Based on the result in Q1, predict how the solubility of fluorite varies with temperature

+ ve ΔH_{R}° (endothermic, Absorb heat): as T increases the position of equilibrium will shift toward the products (the solubility of reactant increase) to reach new equliperum state at new T (according to Le Chatelier's rules)
Q3 Calculate the solubility of fluorite in water at 10, 20, \& $30^{\circ} \mathrm{C}$ \& express each in terms of the concentration of Ca^{2+} in mg / L. (Assume $\mathrm{Y}=1, \mathrm{Mw} \mathrm{Ca}^{2+}=40.08 \mathrm{~g} / \mathrm{mol}, \mathrm{R}$ $=1.987 \mathrm{cal} / \mathrm{molK}, \mathrm{T} .=279.15^{\circ} \mathrm{K}$)

$$
\begin{aligned}
& \mathrm{CaF}_{2_{(s)}} \quad \leftrightarrow \quad \mathrm{Ca}_{(a q)}^{2+} \quad+\quad 2 \mathrm{~F}_{(a q)}^{-} \\
& K^{\circ}=10^{-\left(\frac{\Delta G^{\circ}}{R T^{\circ}}\right)}=10^{-\left(\frac{13.9}{1.364}\right)}=6.45 \times 10^{-11} \\
& \Delta H_{R}^{\circ}=+2.76 \mathrm{Kcal}=2.76 \times 10^{3} \mathrm{cal} \\
& K_{10^{\circ}}=e^{\ln ^{6.45 \times 10^{-11}}-\left(\frac{2760}{1.987}\right)\left(\frac{1}{283.15}-\frac{1}{298.15}\right)}=10^{-10.3} \\
& K_{20^{\circ}}=10^{\left[\log ^{6.45}-11-\left(\frac{2760}{4.575}\right)\left(\frac{1}{293.15 x}-\frac{1}{298.15}\right)\right]}=10^{-10.22} \\
& K_{30^{\circ}}=10^{\left[\log ^{6.45}-11-\left(\frac{2760}{4.575}\right)\left(\frac{1}{303.15_{x}}-\frac{1}{298.15}\right)\right]}=10^{-10.16} \\
& (\gamma=1) \rightarrow K_{x}=(X)(2 X)^{2}=[X][2 X]^{2}=4 X^{3} \\
& {\left[\mathrm{Ca}^{2+}\right]_{10^{\circ}}=\left(\frac{10^{-10.30}}{4}\right)^{\frac{1}{3}} x 40.08 x 1000=9.31 \mathrm{mg} / L} \\
& {\left[\mathrm{Ca}^{2+}\right]_{20^{\circ}}=\left(\frac{10^{-10.22}}{4}\right)^{\frac{1}{3}} x 40.08 \times 1000=9.90 \mathrm{mg} / \mathrm{L}} \\
& {\left[C a^{2+}\right]_{30^{\circ}}=\left(\frac{10^{-10.16}}{4}\right)^{\frac{1}{3}} \times 40.08 \times 1000=10.4 m g / L}
\end{aligned}
$$

Q4 Calculate K° for the reaction of albite $\left(\mathrm{NaAlSi}_{3} \mathrm{O}_{8}\right)$ to form kaolinite, \& write the linear equation

	$n[\mathrm{~mol}]$	$\Delta G_{f}^{\circ}[\mathrm{Kcal} / \mathrm{mol}]$
$\mathrm{NaAlSi}_{3} \mathrm{O}_{8}$	$\mathbf{2}$	$-\mathbf{- 8 8 4 . 8}$
$\mathrm{H}_{2} \mathrm{O}$	9	-56.687
H^{+}	$\mathbf{2}$	$\mathbf{0}$
$\mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{5}(\mathrm{OH})_{4}$	$\mathbf{1}$	$\mathbf{- 9 0 6 . 8 4}$
$\mathrm{H}_{4} \mathrm{Na}_{4}$	$\mathbf{4}$	$\mathbf{- 3 1 2 . 6 6}$
Na^{+}	2	$\mathbf{- 6 2 . 5 9 3}$

$2 \mathrm{NaAlSi}_{3} \mathrm{O}_{8(\mathrm{~s})}+9 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+2 \mathrm{H}^{+}{ }_{(\mathrm{aq})} \Leftrightarrow \mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{5}(\mathrm{OH})_{4(\mathrm{~s})}$
$+\mathbf{4 H}_{4} \mathrm{SiO}_{4(\mathrm{aq})}+\mathbf{2 N a}{ }_{(\text {aq })}$
$\Delta G_{R}^{\circ}=\Sigma n \Delta G_{f_{\text {product }}}^{\circ}-\Sigma n \Delta G_{f_{\text {reactint }}}^{\circ}=-2883 \mathrm{cal}$

$$
\begin{gathered}
K=e^{\frac{-\Delta G^{\circ}}{R T}}=130.32=\frac{\left[\mathrm{H}_{4} \mathrm{SiO}_{4}\right]^{4}\left[\mathrm{Na}^{+}\right]^{2}}{\left[\mathrm{H}^{+}\right]^{2}} \\
\log ^{\frac{\left[\mathrm{H}_{4} \mathrm{SiO}_{4}\right]^{4}\left[\mathrm{Na}^{+}\right]^{2}}{\left[\mathrm{H}^{+}\right]^{2}}}=\log ^{130.32} \\
\log g^{\frac{\left[\mathrm{Na}^{+}\right]}{\left[\mathrm{H}^{+}\right]}}=-2 \log ^{\left[\mathrm{H}_{4} \mathrm{SiO}_{4}\right]}+1.06
\end{gathered}
$$

The equation of linear (with -ve slope \& intersect with Y-axis at point 1.06)

Q5 using the following table, calculate $\log \left[\mathrm{Na}^{+}\right] /\left[\mathrm{H}^{+}\right]$\& $\log \left[\mathrm{H}_{4} \mathrm{SiO}_{4}\right]$, if (A for Y is: $\mathrm{Na}^{+}=4.25, \mathrm{H}^{+}=9, \& \mathrm{H}_{4} \mathrm{SiO}_{4}=0$)

lons		ppm	lons
$\mathrm{HCO}_{3}{ }^{-}$	101	Mg^{2+}	7.6
$\mathrm{SO}_{4}{ }^{-}$	41	Na^{+}	11
Cl^{-}	15	$\mathrm{~K}^{+}$	3.1
$\mathrm{NO}_{3}{ }^{-}$	1.9	SiO_{2}	5.9
Ca^{2+}	34	$\mathrm{pH}=7.2$	

${ }^{\text {st }}$ step: change ppm (mg/L) into mol/L

lons	ppm $[\mathrm{mg} / \mathrm{L}]$	Mw $[\mathrm{g} / \mathrm{mol}]$	Concentrations $[\mathrm{mol} / \mathrm{L}]$
$\mathrm{HCO}_{3}{ }^{-}$	101	61.0	1.66×10^{-3}
$\mathrm{SO}_{4}{ }^{-}$	41	96.1	3.27×10^{-4}
Cl^{-}	15	35.5	4.23×10^{-4}
$\mathrm{NO}_{3}{ }^{-}$	1.9	62.0	3.06×10^{-5}
Ca^{2+}	34	40.1	8.48×10^{-4}
Mg^{2+}	7.6	24.3	3.13×10^{-4}
Na^{+}	11	23.0	4.78×10^{-4}
$\mathrm{~K}^{+}$	3.1	39.1	7.93×10^{-5}
SiO_{2}	5.9	60.1	9.82×10^{-5}
H^{+}			$10^{-7.2}$

$2^{\text {nd }}$ step: Calculate the activity coefficient (y) $\mathrm{I}=1 / 2 \Sigma \mathrm{mz}^{2}=4.4 \times 10^{-3} \rightarrow \mathrm{I}<5 \times 10^{-3}$
For $\left[\mathrm{Na}^{+}\right]: ~ \gamma=10^{-A z^{2} I^{1 / 2}}=10^{-4.25 x\left(4.4 \times 10^{-3}\right)^{1 / 2}}=0.523$
For $\left[\mathrm{H}^{+}\right]: \gamma=10^{-A z^{2} I^{1 / 2}}=10^{-9 x\left(4.4 \times 10^{-3}\right)^{1 / 2}}=0.253$
For $\left[\mathrm{H}_{4} \mathrm{SiO}_{4}\right]: \gamma=10^{-A z^{2} I^{1 / 2}}=10^{-0 x\left(4.4 \times 10^{-3}\right)}=1$
3 rd step: Calculate the activity
Activity $=0.523 \times 4.78 \times 10^{-4}=2.50 \times 10^{-4}$
Activity $=0.253 \times 6.311 \times 10^{-8}=1.60 \times 10^{-8}$
$\mathrm{H}_{4} \mathrm{SiO}_{4} \rightarrow \mathrm{SiO}_{2}+2 \mathrm{H}_{2} \mathrm{O}, \mathrm{n} \mathrm{SiO}_{2}=\mathrm{n} \mathrm{H}_{4} \mathrm{SiO}_{4}$
Concentration $\mathrm{H}_{4} \mathrm{SiO}_{4}=$ Activity $=9.82 \times 10^{-5}$
$4^{\text {th }}$ step: Calculate the logarithms

$$
\begin{aligned}
& \log _{10} \frac{\left[\mathrm{Na}^{+}\right]}{\left[\mathrm{H}^{+}\right]}=\log _{10} \frac{2.5 \times 10^{-4}}{1.6 \times 10^{-8}}=\log _{10}^{7951}=4.19 \\
& \log _{10}\left[\mathrm{H}_{4} \mathrm{SiO}_{4}\right]=\log _{10}^{9.82 \times 10^{-5}}=\log _{10}^{7951}=-4.01
\end{aligned}
$$

Q6 Calculate the value of $\Delta \mathrm{G}^{0}$ for BaF_{2} given that the concentration of Ba^{2+} in a saturated solution = $1.12 \times 10^{-2} \mathrm{~m} / \mathrm{L}$, \& have an ionic strength of $0.01(\mathrm{R}=$ $1.987 \mathrm{cal} / \mathrm{molK} \& \mathrm{~T} .=298.15^{\circ} \mathrm{K}$)

$\mathrm{BaF}_{2(\mathrm{~s})}$	$\mathrm{Ba}^{2+}{ }_{(\mathrm{aq})}$	+	$2 \mathrm{~F}^{-}{ }_{\text {(aq) }}$
1 mol	1 mol		2 mol
$2 \times 10^{-2} \mathrm{~m} / \mathrm{L}$	$1.12 \times 10^{-2} \mathrm{~m} / \mathrm{L}$		$2.24 \times 10^{-2} \mathrm{~m} / \mathrm{L}$

$$
\begin{gathered}
\gamma_{B a}=10^{-\left(\frac{0.5085 \times 4 \times 0.01^{1 / 2}}{1+5 \times 0.3281 \times I^{1 / 2}}\right)}=0.17 \\
\gamma_{F}=10^{-\left(\frac{0.5085 \times 0.01^{1 / 2}}{1+3.5 \times 0.3281 \times 0.01^{1 / 2}}\right)}=0.046
\end{gathered}
$$

$[B a]=1.7 \times 1.12 \times 10^{-3}=1.9 \times 10^{-3}$
$[\mathrm{Fe}]=4.6 \times 2.24 \times 10^{-4}=1.02 \times 10^{-3}$

$$
\begin{gathered}
\Delta G=\Delta G^{\circ}+R T \ln ^{K} \rightarrow \Delta G^{\circ}=-R T \ln ^{K^{\circ}} \\
\Delta G^{\circ}=-592.4 \ln ^{0.0019 x 0.00102^{2}}
\end{gathered}
$$

$\Delta G^{\circ}=11873 \mathrm{cal} / \mathrm{mol}$
$\Delta G^{\circ}=11.873 \mathrm{Kcal} / \mathrm{mol}$

Chapter Eight

Oxidation-Reduction Reactions (REDOX Reactions)

- Elements divided into: Metals \& Non-Metal

Metal	Non-metal
Loss e (e donor)	Gain e (e acceptor)
Oxidation	Reduction
Reducing agent	Oxidizing agent
Increase in ON	Decrease in ON

- These are also called electronegativities
- Alkali metals \& alkaline earths are always electron donors regardless of the environment
- Transition element (Cu, Fe..) loose variable number of e depending on the environments
- non-metals (N, C, S..) take-up variable number of electrons depending on their availability
BALANCING OF REDOX REACTIONS

Elements	V or OS
All elements in pure form (e.g. $\mathrm{F}, \mathrm{O}_{2} \ldots$)	0
H	+1
Hin $\mathrm{H}+(\mathrm{l}$ or II groups), e.g. Li, Na ..	-1
\bigcirc	-2
O in peroxides $\left(\mathrm{O}_{2} \mathrm{H}_{2}, \mathrm{O}_{2} \mathrm{~F} ..\right)$	-1
compound \& ions with n charge	n
Compound without charge	0

$$
V_{\text {compound }}=\Sigma n V_{\text {element }}=0 \text { or } n
$$

EXAMPLE Calculate the V of iron in $\mathrm{FeO}, \mathrm{Fe}_{2} \mathrm{O}_{3}$

- Rules For Balancing equations:

1. Determine oxidized \& reduced agent
2. Balancing the electron in each half
3. Balancing the mass in each half
4. Balancing O by $\mathrm{H}_{2} \mathrm{O}, \& \mathrm{H}^{\text {b }} \mathrm{H}^{+}$

EXAMPLE Balance $\mathrm{Fe}+\mathrm{Cl}_{2} \rightarrow \mathrm{FeCl}_{3}$

Reaction: $\mathrm{Fe}+\mathrm{Cl}_{2} \rightarrow \mathrm{FeCl}_{3}$
Valence: $0 \quad 0 \quad+3,-1$
Oxidation $\mathrm{Fe} \rightarrow \mathrm{Fe}^{3+}+3 \mathrm{e}^{-}$
Reduction $\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}$
By multiply the first half by 2 \& the other by 3

2 Fe	$\rightarrow 2 \mathrm{Fe}^{3+}$	$+6 \mathrm{e}^{-}$	
$3 \mathrm{Cl}_{2}$	$+6 \mathrm{e}^{-}$	\rightarrow	$6 \mathrm{Cl}^{-}$
2 Fe	$+3 \mathrm{Cl}_{2}$	\rightarrow	$2 \mathrm{FeCl}_{3}$

Over all: $2 \mathrm{Fe}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{FeCl}_{3}$
The total exchange of electrons $=6$

Elements	O	R
Metals	\checkmark	\times
Non-Metals	\times	\checkmark
Cations	\times	\checkmark
Anions	\checkmark	\times
Complex Anions $\left(\mathrm{NO}_{3}{ }^{-}, \mathrm{SO}_{4}{ }^{-2}\right)$	\times	\checkmark
Complex Cations $\left(\mathrm{NH}_{4}{ }^{+}\right)$	\vee	\times

EXAMPLE Balance $\mathrm{FeS}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}+\mathrm{SO}_{4}{ }^{2}-$
$\mathrm{FeS}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}+\mathrm{SO}_{4}{ }^{2-}$
$+2,-1 \quad 0 \quad+3,-2,+1 \quad+6,-2$
Fe loss $1 \mathrm{e}^{-}, \& \mathrm{~S}$ loss $7 \mathrm{e}^{-}, \& \mathrm{O}$ gains 2 e

Fe^{2+}	\rightarrow	Fe^{3+}	+
$2 \mathrm{~S}^{-}$	e^{-}		
20	$+4 \mathrm{e}^{-}$	\rightarrow	$14 \mathrm{e}^{-}$
2 O	$2 \mathrm{O}^{-2}$		

by combining the first \& second equations $\begin{gathered}\mathrm{FeS}_{2} \\ 2 \mathrm{O}\end{gathered}+4 \mathrm{e}^{-} \xrightarrow{\rightarrow} \mathrm{Fe}^{3+}+2 \mathrm{O}^{-2}+15 \mathrm{e}^{-}+2 \mathrm{~S}^{6+}$
To Balancing e, multiply FeS_{2} by $4, \& \mathrm{O}_{2}$ by 15 $4 \mathrm{FeS}_{2} \rightarrow 4 \mathrm{Fe}^{3+}+60 \mathrm{e}^{-}+8 \mathrm{~S}^{6+}$ $300+60 \mathrm{e}^{-} \rightarrow 300^{-2}$
by combining this 2 equations $4 \mathrm{FeS}_{2}+15 \mathrm{O}_{2} \rightarrow 4 \mathrm{Fe}(\mathrm{OH})_{3}+8 \mathrm{SO}_{4}{ }^{-2}$
$\mathrm{O}, \& \mathrm{H}$ must be Balancing
$4 \mathrm{FeS}_{2}+15 \mathrm{O}_{2}+14 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{Fe}(\mathrm{OH})_{3}+8 \mathrm{SO}_{4}{ }^{-2}+16 \mathrm{H}^{+}$ The weathering of 1 mol pyrite releases $4 \mathrm{molH}+$ Thus creating a strongly acidic environment

- Discharge of acidified mine waters in streams \& lakes can be harmful to plant \& animal life
- Such a reaction takes place in mines (in particular sulphide ores) when pyrite become exposed to oxygenated waters
- Pyrite found in igneous, metamorphic, \& shale

THE ELECTROMOTIVE SERIES

- The ability of elements to act as electron donors or acceptors depends on the extent to which their orbitals are filled with electrons
- Thermodynamics helps us to rank elements according to strength as REDOX agents
- Let us consider the reaction:

$$
\mathrm{Zn}+\mathrm{Fe}^{2+} \rightarrow \mathrm{Zn}^{2+}+\mathrm{Fe}
$$

Zn is stronger reducing agent (oxidized), \& force Fe to accepted \rightarrow Fe Precipitate \& Zn Dissolved

- Can this reaction proceed to the left?
$\Delta G^{\circ} f=(0-35.2)-(-18.85-0)=-16.29 \mathrm{Kcal}$
this reaction can only proceed as written (- $\Delta \mathrm{Gf}$)

$\Delta \mathbf{G}$	Reaction direction	Type of reaction
$-\Delta \mathbf{G}$	\rightarrow	Endothermic
$+\Delta \mathbf{G}$	\leftarrow	Exothermic
$\mathbf{0}$	\leftrightarrow	Equliperum

Example

$\mathrm{Zn}+\mathrm{Fe}^{2+} \rightarrow \mathrm{Zn}^{2+}+\mathrm{Fe}, \Delta \mathrm{G}^{\circ}=-16.29 \mathrm{kcal}$
$\mathrm{Fe}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Fe}^{2+}+\mathrm{Cu}, \Delta \mathrm{G}^{\circ}=-34.51 \mathrm{kcal}$
$\mathrm{Cu}+2 \mathrm{Ag}^{+} \rightarrow 2 \mathrm{Ag}+\mathrm{Cu}^{2+}, \Delta \mathrm{G}^{\circ}=-21.21 \mathrm{kcal}$ As reducing agent: $\mathrm{Zn}>\mathrm{Fe}>\mathrm{Cu}>\mathrm{Ag}$ Zn is the strongest RE \& displaces the ions of all metals located below (Electromotive series)

$\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}$

Electromotive cell		
	Oxidation	Reduction
Agent	Reducing	Oxidizing
Electrode	Anode	Cathode
Electron	Loss electron	Gain electron
Electrode Charge	-ve	+ve
O-Number	Increasing	Decreasing
Formula	$\mathrm{nX} \rightarrow \mathrm{X}^{\mathrm{n}+}+\mathrm{ne}$	$\mathrm{X}^{+}+\mathrm{ne} \rightarrow \mathrm{nX}$
Reducing agent	Stronger	Weaker
potential [V]	Less	More
$\Delta \mathbf{G}^{\circ}$	-ve, endo, \rightarrow	+ve, exo, \leftarrow
Salt ions	Gain -ve ions	Gain +ve ions
[lons]	Increase	Decrease
Mass	Dissolved	Preceptate

- Addition of the 2 half-cell reactions gives:
$\mathrm{Zn}+\mathrm{Cu}^{2+} \rightarrow \mathrm{Zn}^{2+}+\mathrm{Cu}, \Delta \mathrm{G}=-50.8 \mathrm{kcal}$
at equilibrium: $K=\frac{\left[Z n^{2+}\right]}{\left[C u^{2+}\right]}=10^{-\left(\frac{\Delta G}{1.364}\right)}=10^{37.24}$

$$
\Delta G^{\circ}=n F E^{\circ}, \Delta G=n F E
$$

$\mathrm{F}=$ Farady constant $=96,489 \mathrm{Co} / \mathrm{mole}=23.06 \mathrm{kcal} / \mathrm{volt} /$ gram $\mathrm{n}=$ Number of electrons transferred
$E=$ electromotive Force

Reducing	Oxidizing	Standard electro
agent	agent	potential, V

Cs	$\rightarrow \mathrm{Cs}^{+}$	$+\mathrm{e}^{-}$	-3.03
Li	$\rightarrow \mathrm{Li}^{+}$	$+\mathrm{e}^{-}$	-3.04
K	$\rightarrow \mathrm{K}^{+}$	$+\mathrm{e}^{-}$	-2.94
Ba	$\rightarrow \mathrm{Ba}^{2+}$	$+2 \mathrm{e}^{-}$	-2.91
Sr	$\rightarrow \mathrm{Sr}^{2+}$	$+2 \mathrm{e}^{-}$	-2.90
Ca	$\rightarrow \mathrm{Ca}^{2+}$	$+2 \mathrm{e}^{-}$	-2.87
Na	$\rightarrow \mathrm{Na}^{+}$	$+\mathrm{e}^{-}$	-2.71
Rb	$\rightarrow \mathrm{Rb}^{+}$	$+\mathrm{e}^{-}$	-2.60
Y	$\rightarrow \mathrm{Y}^{3+}$	$+3 \mathrm{e}^{-}$	-2.40
Mg	$\rightarrow \mathrm{Mg}^{2+}$	$+2 \mathrm{e}^{-}$	-2.36
La	$\rightarrow \mathrm{La}^{3+}$	$+3 \mathrm{e}^{-}$	-2.36
Ce	$\rightarrow \mathrm{Ce}^{3+}$	$+3 \mathrm{e}^{-}$	-2.32
Sc	$\rightarrow \mathrm{Sc}^{3+}$	$+3 \mathrm{e}^{-}$	-2.03
Be	$\rightarrow \mathrm{Be}^{2+}$	$+2 \mathrm{e}^{-}$	-1.97
Th	$\rightarrow \mathrm{Th}^{4+}$	$+4 \mathrm{e}^{-}$	-1.83
Al	$\rightarrow \mathrm{Al}^{3+}$	$+3 \mathrm{e}^{-}$	-1.70
U	$\rightarrow \mathrm{U}^{4+}$	$+4 \mathrm{e}^{-}$	-1.38
Mn	$\rightarrow \mathrm{Mn}^{2+}$	$+2 \mathrm{e}^{-}$	-1.18
Nb	$\rightarrow \mathrm{Nb}^{3+}$	$+3 \mathrm{e}^{-}$	-1.10
V	$\rightarrow \mathrm{V}^{3+}$	$+3 \mathrm{e}^{-}$	-0.87
Zn	$\rightarrow \mathrm{Zn}^{2+}$	$+2 \mathrm{e}^{-}$	-0.76
Cr	$\rightarrow \mathrm{Cr}^{3+}$	$+3 \mathrm{e}^{-}$	-0.74
S^{2-}	$\rightarrow \mathrm{S}$	$+2 \mathrm{e}^{-}$	-0.44
Fe	$\rightarrow \mathrm{Fe}^{2+}$	$+2 \mathrm{e}^{-}$	-0.41
Cd	$\rightarrow \mathrm{Cd}^{2+}$	$+2 \mathrm{e}^{-}$	-0.40
Co	$\rightarrow \mathrm{Co}^{2+}$	$+2 \mathrm{e}^{-}$	-0.28
Ni	$\rightarrow \mathrm{Ni}^{2+}$	$+2 \mathrm{e}^{-}$	-0.24
Mo	$\rightarrow \mathrm{Mo}^{3+}$	$+3 \mathrm{e}^{-}$	-0.20
Sn	$\rightarrow \mathrm{Sn}^{2+}$	$+2 \mathrm{e}^{-}$	-0.14
Pb	$\rightarrow \mathrm{Pb}^{2+}$	$+2 \mathrm{e}^{-}$	-0.13
H_{2}	$\rightarrow 2 \mathrm{H}^{+}$	$+2 \mathrm{e}^{-}$	0.00
Bi	$\rightarrow \mathrm{Bi}^{3+}$	$+3 \mathrm{e}^{-}$	+0.29
Cu	$\rightarrow \mathrm{Cu}^{2+}$	$+2 \mathrm{e}^{-}$	+0.34
Cu	$\rightarrow \mathrm{Cu}^{+}$	$+\mathrm{e}^{-}$	+0.52
$2 \mathrm{I}^{-}$	$\rightarrow \mathrm{I}_{2}$	$+2 \mathrm{e}^{-}$	+0.53
Se^{2-}	$\rightarrow \mathrm{Se}$	$+2 \mathrm{e}^{-}$	+0.67
Ag	$\rightarrow \mathrm{Ag}^{+}$	$+\mathrm{e}^{-}$	+0.80
Hg	$\rightarrow \mathrm{Hg}^{2+}$	+ ${ }^{-}$	+0.85
Pd	$\rightarrow \mathrm{Pd}^{2+}$	$+2 \mathrm{e}^{-}$	+0.92
$2 \mathrm{Br}^{-}$	$\rightarrow \mathrm{Br}_{2}$	$+2 \mathrm{e}^{-}$	+1.08
Pt	$\rightarrow \mathrm{Pt}^{2+}$	$+2 \mathrm{e}^{-}$	+1.19
$2 \mathrm{Cl}^{-}$	$\rightarrow \mathrm{Cl}_{2}$	$+2 e^{-}$	+1.36
Au	$\rightarrow \mathrm{Au}^{+}$	$+\mathrm{e}^{-}$	+1.69
Pt	$\rightarrow \mathrm{Pt}^{+}$	$+\mathrm{e}^{-}$	+2.64
$2 \mathrm{~F}^{-}$	$\rightarrow \mathrm{F}_{2}$	$+2 \mathrm{e}^{-}$	+2.88

The potential generated due to the production of e^{-}on Zn electrode (Anode, oxidation), \& their consumption on Cu electrode (Cathode, Reduction)

If reaction reached equilibrium there are no more e transferred so the reaction stop

- The element ranked according to strengths as reducing agents using ΔG° \& the comparing them to a hydrogen half-cell reaction

$$
\mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-}, \mathrm{E}^{\circ}=0.00
$$

$\mathbf{G}^{\circ}\left(\mathbf{H}^{+}\right)=\mathbf{G}^{\circ}(\mathrm{e})=0.00$ by convention

$$
\mathrm{Zn}+2 \mathrm{H}^{+} \rightarrow \mathrm{Zn}^{2+}+\mathrm{H}_{2} \uparrow
$$

$\Delta G^{\circ}=-35.14-0=-35.14 \mathrm{kcal}($ mean $\mathrm{Zn}>\mathrm{H})$

$$
E^{\circ}=\Delta G^{\circ} / n F=-0.76 \mathrm{vol}
$$

$$
\mathrm{Cu}+2 \mathrm{H}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{H}_{2} \uparrow
$$

$\Delta G^{\circ}=+15.66 \mathrm{kcal}, \mathrm{E}^{\circ}=+0.34 \mathrm{volts}($ mean $\mathrm{Cu}<\mathrm{H})$
E° cell $=E^{\circ}$ reduction $+E^{\circ}$ oxidation E° cell $=\mathrm{E}^{\circ}$ reduction $+\mathrm{E}^{\circ}$ oxidation $=-0.76+(-0.34)=-1.1 \mathrm{~V}$

Oxidation: $\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-},-0.76 \mathrm{vol}$
Reduction: $\mathrm{Cu}^{2+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu},-0.34$

- Electromotive series presented in order of decreasing strengths as reducing agents

$$
\Delta G=\Delta G^{\circ}+R T \ln Q=n F E
$$

$E=E^{\circ}+\frac{2.303 R T}{n f} \log ^{Q}=E^{\circ}+\frac{0.0592 \log ^{Q}}{n}$
at equilibum: $E^{\circ}=-\frac{0.05916}{n} \log ^{K}$ n

EXAMPLE Zn-Cu redox

$E=E^{\circ}+0.0592 \log \left(\left[\mathrm{Zn}^{2+}\right] /\left[\mathrm{Cu}^{2+}\right]\right) / 2$ $\mathrm{E}=-1.1+0.0296 \log \left(\left[\mathrm{Zn}^{2+}\right] /\left[\mathrm{Cu}^{2+}\right]\right)$
In the standard state: $[\mathrm{X}]=1$
$E=-1.1+0.0296 \log (1 / 1)=-1.1 \mathrm{~V}$

- Eh: emf generated between an electrode in any state \& the H_{2} electrode at STP, such as:

$$
\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-}
$$

$$
\mathrm{H}^{+}+\mathrm{e}^{-} \rightarrow 1 / 2 \mathrm{H}_{2} .
$$

$\mathrm{Fe}^{2+}+\mathrm{H}^{+} \rightarrow \mathrm{Fe}^{3+}+1 / 2 \mathrm{H}_{2}$ since $\left[\mathrm{H}^{+}\right]=\left[\mathrm{H}_{2}\right]=1.0 \mathrm{in}$ STP \& Q $=K=\left[\mathrm{Fe}^{3+}\right] /\left[\mathrm{Fe}^{2+}\right]$ $\mathrm{Eh}=\mathrm{E}^{\circ}+(0.05916 / \mathrm{n}) \log \mathrm{K}$

$$
\Delta \mathrm{G}^{\circ}=+17.75 \mathrm{kcal}
$$ $\mathrm{E}^{\circ}=+0.769 \mathrm{~V} \rightarrow$

Eh=0.769+
$0.05916 / \mathrm{log}\left[\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}\right]$

- Eh is like the pH (environmental parameter) whose values reflect the ability of the natural system to be an electron donor or acceptor
- The equation deduced above for Fe demonstrates that activity ratio $\left[\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}\right]$ is a function of the Eh of the environment
- Higher Eh \rightarrow oxidizing environment, high Fe^{3+}
- Lower Eh \rightarrow reducing environment

Stability field of water
At $\mathrm{O}_{2}=1 \mathrm{~atm} \rightarrow \mathrm{Eh}=1.23-0.05916 \times \mathrm{pH}$
At $\mathrm{O}_{2}=10^{-83.1} \rightarrow \mathrm{Eh}=-0.05916 \times \mathrm{pH}$

Stability field of Fe-compounds(oxides)

Metallic iron \rightarrow Magnetite $\mathrm{Fe}_{3} \mathrm{O}_{4}$ $3 \mathrm{Fe} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+8 \mathrm{e}^{-}\left(2 \mathrm{Fe} \rightarrow \mathbf{2 F e}{ }^{3+}, \mathrm{Fe} \rightarrow \mathrm{Fe}^{2+}\right)$ $3 \mathrm{Fe}_{(\mathrm{s})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4(\mathrm{~s})}+8 \mathrm{H}_{(\mathrm{aq})}+8 \mathrm{e}^{-}$ generates emf when connected to standard H_{2} $E h=E^{\circ}+\frac{0.05916}{8} \log ^{\left[H^{+}\right]^{8}}=E^{\circ}+0.05916 \log ^{\left[H^{+}\right]}$ $\Delta \mathbf{G}^{\circ}=-15.85 \mathrm{kcal}, \mathrm{E}^{\circ}=-0.086 \mathrm{~V}$
$\mathrm{Eh}=-0.086-0.0592 \mathrm{pH}$ magnetite \rightarrow hematite $\mathrm{Fe}_{3} \mathrm{O}_{4} \rightarrow 3 \mathrm{Fe}_{2} \mathrm{O}_{3}+2 \mathrm{e}^{-}$
$\mathrm{Fe}_{3} \mathrm{O}_{4(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow 3 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-}$ $\Delta \mathbf{G}^{\circ}=+9.087 \mathrm{kcal}, \mathrm{E}^{\circ}=+\mathbf{+} .20 \mathrm{~V}$
Eh = $0.20-0.05916 \mathrm{pH}$

- Solubility of iron oxides: Fe^{2+} \& Fe^{3+} dominate at low pH but the solubility of iron oxides limits their stability in natural environment
Solubility of magnetite with respect to Fe^{2+}

$$
\begin{gathered}
\mathrm{Fe}_{3} \mathrm{O}_{4}+2 \mathrm{e}^{-} \rightarrow 3 \mathrm{Fe}^{2+} \\
3 \mathrm{Fe}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+8 \mathrm{H}^{+}+2 \mathrm{e}^{-} \\
\Delta \mathbf{G}^{\circ}=+40.698{\mathrm{kcal}, \mathrm{E}^{\circ}=+0.88 \mathrm{~V}}^{-}
\end{gathered}
$$

$\mathrm{Eh}=0.88+(0.05916 / 2) \times \log \left([\mathrm{H}]^{8} /\left[\mathrm{Fe}^{2+}\right]^{3}\right)$
$\mathrm{Eh}=0.88-0.237 \mathrm{pH}-0.089 \log \left[\mathrm{Fe}^{2+}\right]$

$$
2 \mathrm{Fe}^{2+}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+6 \mathrm{H}^{+}+2 \mathrm{e}^{-}
$$

$$
\Delta G^{\circ}=+30.161 \mathrm{kcal}, E^{\circ}=+0.65 \mathrm{~V}
$$

$\mathrm{Eh}=0.65+(0.05916 / 2) \times \log \left([\mathrm{H}]^{6} /\left[\mathrm{Fe}^{2+}\right]^{3}\right)$
Eh $=0.65-0.177 \mathrm{pH}-0.0592 \log \left[\mathrm{Fe}^{2+}\right]$

- The solubility of both oxides increases with decreasing pH \& Eh, so when Hematite \& magnetite are exposed to acidic environments with low Eh values (low O_{2}) they go into solution The solubility of hematite with respect to Fe^{2+} (no e^{-}transfer, \& independent on Eh)
$\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathbf{6 H} \rightarrow \mathbf{2} \mathrm{Fe}^{2+}+\mathbf{3} \mathrm{H}_{2} \mathrm{O}$
$\Delta \mathbf{G}^{\circ}=+5.339 \mathrm{kcal}, \mathrm{K}=10^{-3.91}, \mathrm{pH}=1.35$
$\mathrm{Eh}=-0.52+0.473 \times \mathrm{pH}$

- Solution of magnetite to form Fe^{2+} involves oxidation of one divalent Fe^{2+} to Fe^{2+}

$$
\mathrm{Fe}_{3} \mathrm{O}_{4}+8 \mathrm{H}^{+} \rightarrow 3 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O}+\mathrm{e}^{-}
$$

$$
\Delta G^{\circ}=+12.552 \mathrm{kca}, \mathrm{E}^{\circ}=+0.54 \mathrm{~V}, \mathrm{Eh}=0.77 \mathrm{~V}
$$

- Stability of siderite, magnetite, \& hematite in contact with water at $25^{\circ} \mathrm{C},\left[\mathrm{CO}_{2}\right]=10^{-2} \mathrm{~atm}$ \& activities of $10^{-6} \mathrm{~mol} / \mathrm{L}$ for $\mathrm{Fe}^{2+} \& \mathrm{Fe}^{3+}$

PROBLEMS

Material	$\Delta \mathrm{G}^{\circ}$	Material	$\Delta \mathrm{G}^{\circ}$
$\mathrm{H}_{2} \mathrm{O}_{(1)}$	-56.69	$\mathrm{O}_{2 \text { (g) }}$	0.00
$\mathrm{H}^{+}{ }_{\text {aq) }}$	0.000	Fe^{2+}	-18.85
$\mathrm{PbO}_{(\mathrm{s})}$	-45.00	$\mathrm{SiF}_{6}{ }^{2-}{ }_{(\mathrm{aq})}$	-367.9
$\mathrm{PbO}_{2(s)}$	-51.95	$\mathrm{Al}_{(\mathrm{s})}$	0.000
$\mathrm{Cu}_{(s)}$	+15.65	$\mathrm{Al}^{3+}{ }_{(\mathrm{aq})}$	-117.3
$\mathrm{Cu}_{2} \mathrm{O}_{(s)}$	-35.10	$\mathrm{Ag}_{(s)}$	0.000
$\mathrm{Cu}^{2+}{ }_{\text {aq) }}$	+15.65	$\mathrm{Ag}^{+}(\mathrm{aq})$	+18.43
$\mathrm{UO}_{2}{ }^{2+}(\mathrm{aq})$	-227.9	Mn	0.000
$\mathrm{U}^{4+}{ }^{\text {aq }}$)	-126.9	$\mathrm{MnO}(\mathrm{OH})$	-133.2
$\mathrm{Cr}^{3+}{ }_{\text {(aq) }}$	-51.50	$\mathrm{Mn}^{\mathbf{2 +}}$	-54.52
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ (aq)	-311.0	MnO	-86.74
$\mathrm{Si}_{(\mathrm{s})}$	0.000	MnO_{2}	-111.2
$\mathrm{HF}_{(1)}$	-66.64	$\mathrm{Mn}_{3} \mathrm{O}_{4}$	-306.7

Q1 Write electronic formula for $\mathrm{S}^{-}, \mathrm{Ti}^{4^{+}}, \mathrm{P}^{3}, \mathrm{Zr}^{4+}, \mathrm{Cl}^{7+}$
$\mathrm{S}^{2-} \rightarrow \mathrm{S}+2 \mathrm{e}$ (oxidation)
$\mathrm{Ti}^{4+}+4 \mathrm{e} \rightarrow \mathrm{Ti}$ (reduction)
$\mathrm{P}^{3-} \rightarrow \mathrm{P}+3 \mathrm{e}$ (oxidation)
$\mathrm{Zr}^{4+}+4 \mathrm{e} \rightarrow \mathrm{Zr}$ (reduction)
$\mathrm{Cl}^{7+}+7 \mathrm{e} \rightarrow \mathrm{Cl}$ (reduction)

Q2 Balance the following redx reactions
a) $\mathrm{MnO}_{4}^{-}+\mathrm{Cl}^{-} \rightarrow \mathrm{Mn}^{2+}+\mathrm{Cl}_{2}$

Reaction	$\mathrm{MnO}_{4}{ }^{-}+\mathrm{Cl}^{-}$	\rightarrow	Mn^{2+}	+	Cl_{2}	
Valance	$+7,-2$	-1		+2		0
Red. Half	$2 \mathrm{Mn}^{7+}$	+10 e	\rightarrow	$2 \mathrm{Mn}^{2+}$		
Oxid. Half	$10 \mathrm{Cl}^{-}$			\rightarrow	$5 \mathrm{Cl}_{2}$	+10 e

$$
2 \mathrm{MnO}_{4}^{-}+10 \mathrm{Cl}^{-}+16 \mathrm{H}^{+} \rightarrow 5 \mathrm{Cl}_{2}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}
$$

b) $\mathrm{As}_{2} \mathrm{~S}_{3}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{HAsO}_{3}+\mathrm{S}+\mathrm{NO}$

$\mathrm{As}_{2} \mathrm{~S}_{3}+\mathrm{NO}_{3}{ }^{-}$	\rightarrow	HAsO_{3}	+	S	+	NO
$+3,-2$						
	$+5,-2$		$+1,+5,-2$		0	$+2,-2$

Multiply the 1st red equations in 3 \& the 2nd in 10
$3 \mathrm{As}_{2} \mathrm{~S}_{3}+10 \mathrm{NO}_{3}{ }^{-} \rightarrow 6 \mathrm{HasO}_{3}+9 \mathrm{~S}+10 \mathrm{NO}$ $3 \mathrm{As}_{2} \mathrm{~S}_{3}+10 \mathrm{NO}_{3}^{-}+10 \mathrm{H}^{+} \rightarrow 6 \mathrm{HAsO}_{3}+9 \mathrm{~S}+10 \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}$
C) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{I}^{-} \rightarrow \mathrm{Cr}^{3+}+\mathrm{I}_{2}$

$$
\begin{array}{rl}
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2^{-}}+\mathrm{I}^{-} & \rightarrow \mathrm{Cr}^{3+}+\mathrm{I}_{2} \\
+6,-2 & \\
+3 & 0 \\
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2^{-}}+6 \mathrm{l}^{-} & \rightarrow 2 \mathrm{Cr}^{3+} \\
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+61^{-} & \rightarrow 3 I_{2}+6 \mathrm{e} \\
\mathrm{Cr}_{2} \mathrm{O}_{7}^{22^{-}}+61^{-}+14 \mathrm{H}^{+} & \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{Cl}_{2}+7 \mathrm{H}_{2} \mathrm{O}
\end{array}
$$

d) $\mathrm{CrO}_{2}{ }^{-}+\mathrm{ClO}^{-} \rightarrow \mathrm{CrO}_{4}{ }^{-}+\mathrm{Cl}$
$2 \mathrm{CrO}_{2}{ }^{-}+3 \mathrm{ClO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{CrO}_{4}{ }^{2-}+3 \mathrm{Cl}^{-}+2 \mathrm{H}^{+}$
e) $\mathrm{CH}_{4}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{HCO}_{3}{ }^{-}+\mathrm{HS}^{-}$

$$
\mathrm{CH}_{4}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{HCO}_{3}^{-}+\mathrm{HS}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

Q4 Complete the following electrode reactions \& calculate standard electrode potential
a) PbO (red) $\rightarrow \mathrm{PbO}_{2}$

$$
\mathrm{PbO}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{PbO}_{2(\mathrm{~s})}+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-}
$$

$E^{\circ}=\left(\frac{\Delta G^{\circ}}{n f}\right)=\frac{0-51.95+56.687+45}{2 x 23.06}=+1.08 \mathrm{~V}$
b) $\mathrm{Cu}_{2} \mathrm{O} \rightarrow \mathrm{Cu}^{2+}$

$$
\mathrm{Cu}_{2} \mathrm{O}_{(\mathrm{s})}+2 \mathrm{H}^{+}{ }_{(\mathrm{aq})} \rightarrow 2 \mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+3 \mathrm{e}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

$E^{\circ}=\left(\frac{\Delta G^{\circ}}{n f}\right)=\frac{(2 x 15.65)-56.69+35.10}{3 x 23.06}=+0.14 \mathrm{~V}$
C) $\mathrm{UO}_{2}{ }^{2+} \rightarrow \mathrm{U}^{4+}$

$$
\mathrm{UO}_{2}{ }^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}+4 \mathrm{H}^{+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{U}^{4+}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

$E^{\circ}=\left(\frac{\Delta G^{\circ}}{n f}\right)=\frac{-126.9-113.38+227.9}{2 x 23.06}=-0.27 \mathrm{~V}$
d) $\mathrm{Cr}^{3+} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2}$

$$
\mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3 \mathrm{e}+14 \mathrm{H}^{+}
$$

$E^{\circ}=\left(\frac{\Delta G^{\circ}}{n f}\right)=\frac{-311.0+396.83-15.65}{3 x 23.06}=+1.04$
e) $\mathrm{Si} \rightarrow \mathrm{SiF}_{6}{ }^{2}$

$$
\begin{gathered}
\mathrm{Si}+6 \mathrm{HF} \rightarrow \mathrm{SiF}_{6}{ }^{-}+4 \mathrm{e}+6 \mathrm{H}^{+} \\
E^{\circ}=0.35 \mathrm{~V}
\end{gathered}
$$

Q5 Combine the $\mathrm{Ag} \& \mathrm{Cu}$ electrode half-reactions \& calculate the emf when $\left[\mathrm{Cu}^{2+}\right] /\left[\mathrm{Ag}^{+}\right]^{2}=10^{-4}$

$$
2 \mathrm{Ag}^{+} 2 \mathrm{e} \rightarrow 2 \mathrm{Ag}
$$

$$
\mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}
$$

$2 \mathrm{Ag}^{+}+\mathrm{Cu} \rightarrow 2 \mathrm{Ag}+\mathrm{Cu}^{2+}$
$\Delta G^{\circ}=15.65-2 \times 18.433=-21.22 \mathrm{Kcal}$ $\Delta G^{\circ}=n f E^{\circ} \rightarrow E^{\circ}=\left(\frac{\Delta G^{\circ}}{n f}\right)=\frac{-21.22}{2 x 23.06} V=-0.46 \mathrm{~V}$

Another way: from electromotive series
$2 \mathrm{Ag}^{+}+2 \mathrm{e} \rightarrow 2 \mathrm{Ag}$ (reduction, -0.8 V)
$\mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}$ (oxidation, +0.34 V) $E^{\circ}{ }_{\text {cell }}=E^{\circ}{ }_{\text {oxidation }}+E^{\circ}{ }_{\text {reduction }}=0.34-0.80=-0.46 \mathrm{~V}$

$$
E=E+\frac{2.303 R T}{n f} \log ^{Q}=-0.46+\frac{0.0592 \log ^{10^{-4}}}{2}
$$

$$
E=-0.578 V
$$

Q6 Combine the Al \& Ni electrodes \& calculate the emf when $\left[\mathrm{Ni}^{2+}\right]^{3} /\left[\mathrm{Al}^{3+}\right]^{2}=10^{-2}$

$$
2 \mathrm{Al}^{3+}+6 \mathrm{e} \rightarrow 2 \mathrm{Al} \text { (reduced, } 1.70 \text {) }
$$

$3 \mathrm{Ni} \rightarrow 3 \mathrm{Ni}^{2+}+6 \mathrm{e}$ (oxidation, -0.24)

$$
2 \mathrm{Al}^{3^{+}}+3 \mathrm{Ni} \rightarrow 2 \mathrm{Al}+3 \mathrm{Ni}^{2^{+}}
$$

$E^{\circ}{ }_{\text {cell }}=E^{\circ}{ }_{\text {oxidation }}+E^{\circ}{ }_{\text {reduction }}=1.70-0.24=+1.46 \mathrm{~V}$

$$
\Delta G^{\circ}=(3 x-10.9)-(2 x-117.33)=+202.0 \text { Kcal }
$$

$$
E^{\circ}=\left(\frac{\Delta G^{\circ}}{n f}\right)=\frac{+202.0}{6 \times 23.06} V=+1.46 \mathrm{~V}
$$

$$
E=1.46+\frac{0.0592 \log ^{10^{-2}}}{6}=+1.44 \mathrm{~V}
$$

Q7 Mn forms: $\mathrm{MnOOH}, \mathrm{MnO}, \mathrm{MnO}_{2}, \& \mathrm{Mn}_{3} \mathrm{O}_{4}$
a) Determine Mn valence in each compound, \& order oxides in terms of increasing valence

MnOOH	Mn	0	0	H	$\mathrm{X}=4-1=+3$
	X	-2	-2	+1	
MnO	Mn	0	X = +2		
	X	-2			
MnO_{2}	Mn	O_{2}	$\mathrm{X}=+4$		
	X	-4			
$\mathrm{Mn}_{3} \mathrm{O}_{4}$	MnO		$\mathrm{Mn}_{2} \mathrm{O}_{3}$	$\mathrm{X}=+3,+2$	
	X	2X	-8		

$\mathrm{Mn}^{4+} \mathrm{O}_{2}>\mathrm{Mn}^{3+} \mathrm{O}(\mathrm{OH}) \& \mathrm{Mn}^{2+} \mathrm{OMn}^{3+}{ }_{2} \mathrm{O}_{3}>\mathrm{Mn}^{2+} \mathrm{O}$
b) Derive Eh-pH equations based on the progressive oxidation of Mn to form oxides starting with metallic ($\mathrm{Mn} \rightarrow \mathrm{MnO}$)

$$
M n \rightarrow M n^{2+}+2 e
$$

$\mathrm{Mn}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{MnO}_{(\mathrm{s})}+2 \mathrm{H}^{+}(\mathrm{qq)})+2 \mathrm{e}$
$E^{\circ}=\left(\frac{\Delta G^{\circ}}{n f}\right)=\frac{-86.74+56.69}{2 x 23.06} \mathrm{~V}=-0.65 \mathrm{~V}$
$E h=E^{\circ}+\frac{0.0592}{n} \log ^{Q}=-0.65+\frac{0.0592}{2} \log ^{\left[H^{+}\right]^{2}}$
$E h=-0.0592 p H-0.65 \ldots(i)$

$$
3 \mathrm{Mn}^{2+} \rightarrow \mathrm{Mn}^{2+}+2 \mathrm{Mn}^{3+}+2 \mathrm{e}
$$

$3 \mathrm{MnO}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{Mn}_{3} \mathrm{O}_{4(\mathrm{~s})}+2 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+2 \mathrm{e}$

$$
\begin{gathered}
E^{\circ}=\left(\frac{\Delta G^{\circ}}{n f}\right)=\frac{-306.7+260.22+56.69}{2 \times 23.06} V=+0.22 \mathrm{~V} \\
E h=+022+\frac{0.0592}{2} \log ^{\left[H^{+}\right]^{2}} \\
E h=-0.0592 \boldsymbol{p H}+\mathbf{0 . 2 2 \ldots (i i)}
\end{gathered}
$$

$$
\mathrm{Mn}^{2+}+2 \mathrm{Mn}^{3+} \rightarrow 3 \mathrm{Mn}^{3+}+\mathrm{e}
$$

$\mathrm{Mn}_{3} \mathrm{O}_{4(\mathrm{~s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow 3 \mathrm{MnO}(\mathrm{OH})_{(\mathrm{s})}+\mathrm{H}^{+}{ }_{(\text {aq })}+\mathrm{e}$
$E^{\circ}=\left(\frac{\Delta G^{\circ}}{n f}\right)=\frac{-399.6+420.08}{1 \times 23.06} V=+0.89 \mathrm{~V}$
$E h=+0.89+\frac{0.0592}{1} \log ^{\left[H^{+}\right]}$
Eh $=-0.0592 p H+0.89 \ldots(i i)$

$$
\begin{gathered}
\mathbf{M n}^{3+} \rightarrow \mathbf{M n}^{4+}+\mathrm{e} \\
\mathbf{M n O}(\mathrm{OH})_{(\mathrm{s})}^{\rightarrow} \mathrm{MnO}_{2(\mathrm{~s})}+\mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{e} \\
E^{\circ}=\left(\frac{\Delta G^{\circ}}{n f}\right)=\frac{133.2-111.2}{1 \times 23.06} \mathrm{~V}=+0.95 \mathrm{~V} \\
E h=+0.95+\frac{0.0592}{1} \log ^{\left[H^{+}\right]} \\
\text {Eh }=-\mathbf{0 . 0 5 9 2 p H}+\mathbf{0 . 9 5} \ldots \text { (ii) }
\end{gathered}
$$

c) Derive equations of Eh-pH for Mn to form Mn^{2+}
$\mathrm{MnO} \rightarrow \mathrm{Mn}^{2+}+2 \mathrm{e}, \mathrm{Mn}_{(\mathrm{s})} \rightarrow \mathrm{Mn}^{2+}+2 \mathrm{e}$ $E^{\circ}=\left(\frac{\Delta G^{\circ}}{n f}\right)=\frac{-54.52}{2 x 23.06} \mathrm{~V}=-1.18 \mathrm{~V}$ $E h=-1.18+\frac{0.0592}{2} \log ^{\left[M n^{2+}\right]}=0.0296 \log ^{\left[\mathrm{Mn}^{2+}\right]}-1.18$ (don't controlled by pH)

ANOTHER PROBLEMS

If the measured Eh of water is 0.65 , what is the dominant form of copper (Cu^{+}or Cu^{2+}) in this water ($\Delta \mathrm{G}^{\circ}$ in Kcal/mol : $\mathrm{Cu}^{+}=11.95, \mathrm{Cu}^{2+}=15.65$)

$$
\mathrm{Cu}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{e}
$$

$$
\Delta G^{\circ}=15.65-11.95=+3.7 \mathrm{Kcal}
$$

$$
\begin{gathered}
E^{\circ}=\left(\frac{\Delta G^{\circ}}{n f}\right)=\frac{+3.70}{1 \times 23.06} V=+0.160 \mathrm{~V} \\
E h=0.160+\frac{0.0592}{1} \log g^{\left[c u^{2+}\right]}=0.650 \\
\frac{\left[c u^{2+}\right]}{\left[c u^{+}\right]}=10^{\frac{(0.65-0.16)}{0.0592}}=10^{8.3} \rightarrow \mathrm{Cu}^{+} \text {is the dominant }
\end{gathered}
$$

Calculate the Eh of a water with $2 \times 10^{-3} \mathrm{Mn}^{2+} \& 5 \times 10^{-}$
${ }^{10} \mathrm{Mn}^{3+}$ activities ($\Delta \mathrm{G}$: $\mathrm{Mn}^{3+}=-20.26, \mathrm{Mn}^{2+}=-54.52$)

$$
\begin{gathered}
\mathbf{M n}^{2+} \rightarrow \mathbf{M n ^ { 3 + }}+\mathbf{e} \\
\Delta \mathbf{G}^{\circ}=54.52-20.26=+34.26 \mathrm{Kcal} \\
E^{\circ}=\left(\frac{\Delta G^{\circ}}{n f}\right)=\frac{+34.26}{1 \times 23.06} V=+1.49 \mathrm{~V} \\
E h=E^{\circ}+\frac{0.0592}{1} \log ^{\left[\frac{\left[M n^{+3}\right]}{\left[M n^{+2}\right]}\right.}=1.10
\end{gathered}
$$

CHEPTER NINE ISOTOPES GEOCHRONOLOEY

	Types of dating in Geology
Absolute	Actual number to describe age (date in yr)
Relative	Order of events relative to each other (older, younger, or same age)

- Radioactivity: Spontaneous decay of element to another with concurrent release of energy
- Atom: The smallest possible particle that retains the properties of element (All atoms of element are essentially the same)

Particles	Mass	Charge	Positions	Controlled
Proton	\boldsymbol{V}	+ve	Nucleus	Mass of atom
Electron	\mathbf{X}	-ve	around nucleus	Atom volume
Neutron	\boldsymbol{V}	$\mathbf{0}$	Nucleus	Mass of atom

- Mass Number (A): total number of p^{+}\& η
- Isotope: atoms having different numbers of neutrons but the same number of protons

	Types of isotopes
Stable isotopes	Don't decay
Unstable isotopes	Decay into another elements, The more differences in number of p \& η the more the unstable atoms

The first 20 elements (to Ca) more or less have number of η same as H^{+}(related to stability)

- Absolute dating is done using the radioactive isotopes (which decay at a constant rate)
- Rate of decays is constant because don't depends on any conditions (T, P, state...)
- Nuclear Spontaneous Fission: nucleolus breaks into 2 unequal fragments, which are unstable \& decay by β-emission
- heavy nuclei with even Z (e.g. ${ }^{238} \mathrm{U},{ }^{244 \mathrm{Pu}}$) are spontaneously fission, \& with Odd-Z fission in response to η-capture
- The spontaneous fission of ${ }^{238} \mathrm{U}$ decays Energy cause damage \& tracks in the crystal lattice \& forms basis for fission-track method of dating

RADIOACTIVITY EQUATIONS

- Exponential time function: Rate of decay is proportional to the number of atoms of that nuclide remaining at any time

$$
\lambda N=-\frac{d N}{d t}
$$

λ : constant, N : \# of parent atoms, (-): parent atoms decreasing with \dagger by integration: $\ln ^{N}=-\lambda t+C$

When $\mathrm{t}=0 \rightarrow \mathrm{C}=\ln ^{N_{0}}$
$N_{0}=\#$ radioactive elements at $t=0$

$$
\begin{gathered}
\ln ^{N}=-\lambda t+\ln ^{N_{0}} \rightarrow \ln ^{\frac{N}{N_{0}}}=-\lambda t \rightarrow N=N_{0} e^{-\lambda t} \\
\text { When } t=\text { half-life } \rightarrow N=N_{0} / 2 \text {, So: } \\
\frac{N_{0}}{2}=N_{0} e^{-\lambda t_{1 / 2}} \rightarrow 1 / 2=e^{-\lambda t t_{2} /} \rightarrow t_{1 / 2}=\frac{\ln ^{2}}{\lambda}
\end{gathered}
$$

Example $87 \mathrm{Rb} \rightarrow 87 \mathrm{Sr}$ with $\lambda=1.42 \times 10^{-11} \mathrm{y}^{-}$
$\dagger 1 / 2=\ln 2 / 1.42 \times 10^{-11} \mathrm{y}^{-1}=48.8 \mathrm{Ga}$

- λ calculated experimentally:

$T / 2=(\ln 2 / 0.04614)=15$ hours

$$
\begin{gathered}
A=-\frac{d N}{d t}=\lambda N \\
A=A_{0} e^{-\lambda t} \\
\ln ^{A}=\ln ^{A_{0}}-\lambda t \text { (linear) }
\end{gathered}
$$

- we can't directly measure N_{0} (inertial parent atoms) so must get expression relative to daughter atoms \& remaining parent atoms

$$
\begin{gathered}
D^{*}=N_{0}-N=N_{0}-N_{0} e^{-\lambda t}=N_{0}\left(1-e^{-\lambda t}\right) \\
D^{*}=N\left(e^{-\lambda t}-1\right) \rightarrow t=\frac{1}{\lambda} \ln {\frac{D^{*}}{N}}^{+1}
\end{gathered}
$$

D^{*} : radiogenic daughter atoms

$$
D=D_{0}+D^{*}=D_{0}+N\left(e^{-\lambda t}-1\right)
$$

D_{0} : inertial daughter atoms (from another source)

- Assumptions for age equation:

1. Narent \& Ndaughter atoms per unit weight changed by decay of parent to daughter
2. The isotopic composition of parent element was not altered by fractionation of isotopes at time of formation of the mineral
3. $\lambda_{\text {parent }}$ is known accurately
4. The isochron is not a mixing line
5. The analytical data are accurate

- Isotopes abundances measured using mass thermal ionization mass spectrometer (TIMS)

R.ADIOACTIVITY METHODS

$\begin{gathered} \text { Parent } \\ \mathrm{N} \end{gathered}$	Daughter D	$\begin{gathered} t_{1 / 2} \\ {\left[y r^{*} 10^{10}\right]} \end{gathered}$	$\stackrel{\lambda}{\left[y r^{-1 *} 10^{-10}\right]}$	N\%
K_{19}^{40}	Ar_{18}^{40}	1.19000	0.58100	0.01167
K_{19}^{40}	Ca_{20}^{40}	1.40000	4.96200	0.01167
K_{19}^{40}	$\mathrm{Ar}_{18}^{40}+\mathrm{Ca}_{20}^{40}$	0.12500	5.54300	0.01167
$R b_{37}^{87}$	Sr_{38}^{87}	4.88000	0.14200	27.8346
Sm_{62}^{147}	$N d_{60}^{143}$	10.6000	0.00654	15.0000
$L a_{57}^{138}$	$C e_{58}^{138}$	27.0000	0.02570	0.09000
$L a_{57}^{138}$	Ba ${ }_{56}^{138}$	15.1000	0.04590	0.09000
$L a_{57}^{138}$	$C e_{58}^{138}+B a_{56}^{138}$	9.68000	0.07160	0.09000
$L u_{71}^{176}$	$H f_{72}^{176}$	3.57000	0.19400	2.60000
Re_{75}^{187}	O s_{76}^{187}	4.56000	0.15200	62.6020
U_{92}^{238}	Pb_{82}^{206}	0.44680	1.55125	99.2743
U_{92}^{235}	$P b_{82}^{207}$	0.07038	9.84850	0.72000
$T h_{90}^{232}$	Pb ${ }_{82}^{208}$	1.40100	0.49475	100.000
$R b_{37}^{87}-S r_{38}^{87} \text { method }$				

$\boldsymbol{\beta}$-decay (Neutron capture): $\boldsymbol{\eta} \rightarrow \mathbf{H}^{+}+\boldsymbol{\beta}^{-}+\mathbf{v}$ $R b_{37}^{87} \rightarrow S r_{38}^{87}+\beta^{-}+\underline{v}+E$ $D=D_{0}+N\left(e^{\lambda t}-1\right)$

$$
S r_{38}^{87}=S r_{38}^{87}{ }_{0}+R b_{37}^{87}\left(e^{\lambda t}-1\right)
$$

$$
\left|\frac{S r_{38}^{87}}{S r_{38}^{86}}\right|_{t}=\left|\frac{S \frac{S 8}{88}}{S r_{38}^{86}}\right|_{0}+\left|\frac{R b_{37}^{87}}{S r_{38}^{86}}\right|\left(e^{\lambda t}-1\right)
$$

EXAMPLE calculate $\mathrm{Rb}-\mathrm{Sr}$ data \& half-life for biotite in gneiss if $87 \mathrm{Rb} / 86 \mathrm{Sr}=107.1,87 \mathrm{Sr} / 86 \mathrm{Sr}=3.093$, inertial $87 \mathrm{Sr} / 86 \mathrm{Sr}=0.7030, \& \lambda=0.142 \times \mathrm{yr}^{-1 *} 10^{-10}$

$$
\begin{gathered}
\left|\frac{S r_{38}^{87}}{S r_{38}^{86}}\right|_{t}=\left|\frac{S r_{38}^{87}}{S r_{38}^{86}}\right|_{0}+\left|\frac{R b_{37}^{87}}{S r_{38}^{86}}\right|\left(e^{\lambda t}-1\right) \\
3.093=0.703+107.1\left(e^{1.42 \times 10^{-11} x t}-1\right) \\
t=\frac{\ln \left(\frac{(3.093-0.703}{107.1}+1\right)}{1.42 \times 10^{-11}}=\frac{\ln 1.02232}{1.42} \times 10^{11}=1.555 \mathrm{Ga}
\end{gathered}
$$

$$
t_{1 / 2}=\frac{\ln ^{2}}{\lambda}=\frac{\ln ^{2}}{1.42 \times 10^{11}}=48.8 \mathrm{Ga}
$$

${ }^{87} \mathrm{Rb} /{ }^{86} \mathrm{Sr}$

$\left.{ }^{87} \mathrm{Rb}\right)^{86} \mathrm{Sr}$
لمعرفة عدد ذرات الستريشيوم المتو اجدة قبل عملية تحلل الروبيبيوم نقوم باخذ عينات مختلفة من المعادن من نفس الصخر، ونقوم بتمثيلها على ال isochrone و والتقاطع مع محور y هو النسبة الاولية للستريشيوم، واليلل

يساوي
EXAMPLE Minerals from igneous rocks gave the following ratios, calculate $\mathrm{Rb}-\mathrm{Sr}$ data

slope $=e^{\lambda t}-1=0.009$

$$
t=\frac{\ln ^{\text {slope }+1}}{\lambda}=\frac{\ln ^{1.009}}{1.42 \times 10^{-11}}=6.31 \times 10^{8} y r=631 \mathrm{Ma}
$$

$$
S m_{62}^{147}-N d_{60}^{143} \text { method }
$$

$$
(\alpha-\text { decay }): X_{Z}^{A} \rightarrow Y_{Z-2}^{A-4}+H e_{2}^{4}+E
$$

$$
S m_{62}^{147} \rightarrow N d_{60}^{143}+\alpha+E
$$

$$
\left|\frac{N d_{60}^{143}}{N d_{60}^{144}}\right|_{t}=\left|\frac{N d_{60}^{143}}{N d_{60}^{144}}\right|_{0}+\left|\frac{S m_{62}^{147}}{N d_{60}^{144}}\right|\left(e^{\lambda t}-1\right)
$$

- This method is useful for dating Ca-rich Precambrian igneous \& metamorphic rocks

$$
\begin{gathered}
K_{19}^{40}-A r_{18}^{40}+C a_{20}^{40} \text { method } \\
K_{19}^{40}+\beta^{-} \rightarrow A r_{18}^{40}, \lambda_{e}=5.81 \times 10^{-11} a^{-1} \\
K_{19}^{40} \rightarrow C a_{20}^{40}+\beta^{-}, \lambda_{\beta^{-}}=55.43 \times 10^{-11} a^{-1} \\
\left|A r_{18}^{40}\right|_{t}=\left|A r_{18}^{40}\right|_{0}+\left(\frac{\lambda_{e}}{\lambda_{e}+\lambda_{\beta^{-}}}\right)\left|K_{19}^{40}\right|\left(e^{\lambda t}-1\right)
\end{gathered}
$$

- This method is used to date K-bearing minerals, especially the basalts of the oceanic crust

$$
\begin{gathered}
U_{92}^{238}-P b_{82}^{206} \text { method } \\
\left|\frac{P b_{82}^{206}}{P b_{82}^{204}}\right|_{t}=\left|\frac{P b_{82}^{206}}{P b_{82}^{204}}\right|_{0}+\left|\frac{U_{92}^{238}}{P b_{82}^{204}}\right|_{t}\left(e^{\lambda_{1} t}-1\right) \\
\text { mostly in this system: }\left|\frac{P b_{82}^{206}}{P b_{82}^{204}}\right|_{0}=0 \text {, then: } \\
t=\frac{\ln \left(\frac{P b_{82}^{206}}{U_{92}^{238}+1}\right)}{\lambda} \\
U_{92}^{235}-P b_{82}^{207} m e t h o d \\
\left|\frac{P b_{82}^{207}}{P b_{82}^{204}}\right|_{t}=\left|\frac{P b_{82}^{207}}{P b_{82}^{204}}\right|_{0}+\left|\frac{U_{92}^{235}}{P b_{82}^{204}}\right|_{t}\left(e^{\lambda_{2} t}-1\right) \\
t=\frac{l n}{\left(\frac{P b_{82}^{20}}{U_{92}^{235}}\right)} \\
\lambda
\end{gathered}
$$

$T h_{90}^{232}-P b_{82}^{207}$ method
$7 \sigma+4 \beta$

$$
\left|\frac{P b_{82}^{208}}{P b_{82}^{204}}\right|_{t}=\left|\frac{P b_{82}^{208}}{P b_{82}^{204}}\right|_{0}+\left|\frac{T h_{9}^{232}}{P b_{82}^{204}}\right|_{t}\left(e^{\lambda_{2} t}-1\right)
$$

$$
t=\frac{\ln \left(\frac{P b_{82}^{208}}{T h_{90}^{232}+1}\right)}{\lambda}
$$

- The mineral that most commonly used in U-Pb \& Th- Pb methods is zircon $\left(\mathrm{ZrSiO}_{4}\right)$ because $\mathrm{U}^{4+} \&$ Th^{4+} rabidly substitute for Zr^{4+} because have same radius \& charge but led are too large

ولكن عند اخذ عينات متعددة من المعادن من نس الصخر واسقاطها على ال
 geological وتم تفسير ذلك بانه خلال حدو discordia ويسى metamorphism, change in T, \& during مثل events (اي يقل العمر المفترض وهو ما يسمى (lead loss of time حجم العينة تبتّد اكثر عن ال Concordia ويوجد نقطتي تقاطع بين ال , concordia \& discordia 1. التقاطع من الاعلى: وهو العمر الاصلي للعينات (الصخر) 2. التقاطع من الاسفل: وهو عمر ال events

PROBLEMS

Calculate $\mathrm{Rb}-\mathrm{Sr}$ date for the sample of biotite if $87 \mathrm{Rb} / 86 \mathrm{Sr}=107.1,87 \mathrm{Sr} / 86 \mathrm{Sr}=3.093,(87 \mathrm{Sr} / 86 \mathrm{Sr}) 0=$ 0.7030 , \& Decay constant $\lambda=1.42 \times 10^{-11} a^{-1}$

$$
\left|\frac{S r_{38}^{87}}{S r_{38}^{86}}\right|_{t}=\left|\frac{S r_{38}^{87}}{S r_{38}^{86}}\right|_{0}+\left|\frac{R b_{37}^{87}}{S r_{38}^{86}}\right|\left(e^{\lambda t}-1\right)
$$

$$
\begin{aligned}
& 3.093=0.7030+107.1\left(e^{1.42 \times 10^{-10} x t}-1\right) \\
& t=\frac{l^{\frac{3.093-0.703}{107.1}+1}}{1.42 \times 10^{-11}}=1.55 \times 10^{9} y r=1.55 \mathrm{Ga}
\end{aligned}
$$

Calculate the slope \& intercept of $\mathrm{Rb}-\mathrm{Sr}$ isochron by least squares method using the following data Samples $\quad 87 \mathrm{Rb} / 86 \mathrm{Sr} \quad 87 \mathrm{Sr} / 86 \mathrm{Sr}$

1	763.00	17.337
2	41.520	1.7390
3	107.12	3.0930
4	166.70	4.5430
5	138.70	3.8580
6	330.70	3.0570
7	82.700	2.7410

Use the slope to calculate a date for these samples ($\lambda=1.42 \times 10^{-11}$)
Note that, we use this method when we don't know (87Sr) ${ }_{0}$
Note that, least squares method is a statistical method used to draw the best fit line (excel sheet basically use this method)

Intercept $=0.8806=(87 \mathrm{Sr} / 86 \mathrm{Sr})_{0}$

$$
\text { slope }=0.0216=\left(e^{\lambda t}-1\right)
$$

$$
t=\frac{\ln ^{1.0216}}{1.42 \times 10^{-11}}=1.5 G a
$$

Calculate the $\mathrm{Rb}-\mathrm{Sr}$ age $\&$ initial $87 \mathrm{Sr} / 86 \mathrm{Sr}$ of a sample based on the following data ($\lambda=1.42 \times 10^{-11}$)

Intercept $=(87 \mathrm{Sr} / 86 \mathrm{Sr})_{0}=0.6971$

$$
\begin{gathered}
\left(e^{\lambda t}-1\right)=\text { slope }=\frac{0.8245-0.7096}{2.098-0.198}=0.0605 \\
t=\frac{\ln ^{1.0605}}{1.42 \times 10^{-11}}=4.14 G a
\end{gathered}
$$

Calculate a Rb-Sr date from the following analyses ($\lambda=1.42 \times 10^{-11}$)

Samples	$87 \mathrm{Rb} / 86 \mathrm{Sr}$	$\mathbf{8 7 S r} / 86 \mathrm{Sr}$
Whole rock	1.1730	0.7668
Biotite	116.74	4.5430
K-feldspar	0.6437	0.7822
Plagioclase	0.0633	0.7344

$(87 \mathrm{Sr} / 86 \mathrm{Sr})_{0}=0.7468$

$$
\left(e^{\lambda t}-1\right)=0.02277 \rightarrow t=1.59 G a
$$

Calculate $\mathrm{U}-\mathrm{Pb}$ \& Th- Pb dates if: ${ }^{206 \mathrm{~Pb}} /{ }^{204} \mathrm{~Pb}=53.90$, ${ }^{207} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}=20.76,{ }^{208} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}=36.94,{ }^{238} \mathrm{U} /{ }^{204} \mathrm{~Pb}=$ 88.746, ${ }^{238} \mathrm{U} /{ }^{235} \mathrm{U}=137.88,{ }^{232 \mathrm{Th}} /{ }^{204} \mathrm{~Pb}=55.38$, $\left({ }^{206} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}\right) \mathrm{i}=12.97,\left({ }^{207} \mathrm{pb} /{ }^{204} \mathrm{pb}\right) \mathrm{i}=14.17$, $\left({ }^{208} \mathrm{pb} /{ }^{204} \mathrm{pb}\right) \mathrm{i}=33.90, \lambda 1=1.55125 \times 10^{-10}, \lambda 2=$ $9.8485 \times 10^{-10}, \& \lambda 3=4.9475 \times \times 10^{-11}$

$$
\begin{aligned}
&\left|\frac{P b_{82}^{206}}{P b_{82}^{204}}\right|_{t}=\left|\frac{P b_{82}^{206}}{P b_{82}^{204}}\right|_{0}+\left|\frac{U_{92}^{238}}{P b_{82}^{204}}\right|_{t}\left(e^{\lambda_{1} t}-1\right) \\
& t_{206}=\frac{\ln \frac{53.90-12.97}{88.746}+1}{1.55125 \times 10^{-10}}=2.44 G a \\
& \frac{\frac{U^{238}}{P b^{204}}}{\frac{U^{238}}{U^{235}}}=\frac{U^{235}}{P b^{204}}=\frac{88.746}{137.88}=0.643 \\
&\left|\frac{P b_{82}^{207}}{P b_{82}^{204}}\right|_{t}=\left|\frac{P b_{82}^{207}}{P b_{82}^{204}}\right|_{0}+\left|\frac{U_{92}^{235}}{P b_{82}^{204}}\right|_{t}\left(e^{\lambda_{2} t}-1\right) \\
& t_{207}=\frac{n^{\frac{20.76-14.17}{0.643}+1}}{9.8485 \times 10^{-10}}=2.458 G a \\
&\left|\frac{P b_{82}^{208}}{P b_{82}^{204}}\right|_{t}=\left|\frac{P b_{82}^{208}}{P b_{82}^{204}}\right|_{0}+\left|\frac{T h_{90}^{232}}{P b_{82}^{204}}\right|_{t}\left(e^{\lambda_{2} t}-1\right) \\
& t_{208}=\frac{\ln \frac{36.94-33.90}{55.38}+1}{4.9475 \times 10^{-11}}=1.08 G a \\
& \hline \hline
\end{aligned}
$$

Calculate 3 dates for a zircon by the following data: ${ }^{238} \mathrm{U} /{ }^{204} \mathrm{~Pb}=6807.4,{ }^{235} \mathrm{U} / 204 \mathrm{~Pb}=49.372,{ }^{232} \mathrm{Th} /{ }^{204} \mathrm{~Pb}=$ $2829.4,{ }^{206 P b} /{ }^{204} \mathrm{~Pb}=1657.29,{ }^{207} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}=171.99$, ${ }^{208 P b} /{ }^{204 P b}=185.72, \lambda_{206}=1.55125 \times 10^{-10}, \lambda_{207}=$ $9.8485 \times 10^{-10}, \lambda_{208}=4.9475 \times \times 10^{-11}$

$$
\begin{aligned}
& t=\frac{\ln \left(\frac{P b_{82}^{206}}{U_{92}^{238}}+1\right)}{\lambda}=\frac{1}{\lambda} x \ln \left(\frac{\left.\frac{\left(\frac{P b^{206}}{P b^{204}}\right)}{P b^{204}}\right)}{\lambda}+1\right. \\
& t=\frac{10^{10}}{1.55125} x \ln \left(\frac{1657.29}{6807.4}+1\right)=1.4 G a \\
& t=\frac{\ln \left(\frac{P b_{82}^{207}}{U_{92}^{235}}+1\right)}{\lambda}=\frac{\ln \left(\frac{\left(\frac{P b^{207}}{P b^{204}}\right)}{\left(\frac{U^{235}}{P b^{204}}\right)}+1\right)}{\lambda} \\
& t_{207}=\frac{10^{10}}{9.8485} \ln \frac{171.99}{49.372}+1=1.5 G a \\
& t=\frac{\ln }{\left(\frac{P b_{82}^{208}}{T h_{90}^{232}+1}\right)} \\
& \lambda
\end{aligned} \frac{1}{\lambda} \ln \left(\frac{\left(\frac{P b^{208}}{P b^{204}}\right)}{\left(\frac{T h^{232}}{P b^{204}}\right)}+1\right)
$$

CHCPTKRP THN

- The Earth has a unique position in the solar system because $\mathrm{H}_{2} \mathrm{O}$ exists in the liquid form
$>$ This existence is a pre-requisite for the development \& preservation of life
> The medium, where chemical reactions take place; \& from which a series of solids form, like carbonates, silicates, phosphates
- Oxygen is the most abundant element in the Earth's crust \& H in the solar system
- H, O, C, N, \& S share in all geochemical \& biochemical reactions on the Earth's surface
> The masses of these elements in addition to $\mathrm{Li}, \mathrm{B}, \mathrm{Si}, \mathrm{Cl}, \& \mathrm{Se}$ are subject to massdependent fractionation

Fractionation due to mass dififerences									
Isotope	$\begin{aligned} & \text { H } \\ & \text { D } \end{aligned}$	$\begin{aligned} & { }^{12} \mathrm{C} \\ & { }^{13} \mathrm{C} \end{aligned}$	$\begin{aligned} & { }^{14} \mathrm{~N} \\ & { }^{15} \mathrm{~N} \end{aligned}$		$\begin{aligned} & 160 \\ & 180 \end{aligned}$			$\begin{aligned} & 235 \mathrm{U} \\ & 238 \mathrm{U} \end{aligned}$	$\begin{gathered} { }^{206 \mathrm{~Pb}} \\ { }_{207} \mathrm{~Pb} \end{gathered}$
D\% 99.8		8.36	7.12		12.5			1.30	0.49
Abundances of stable H, \& O isotopes									
Elements		Hydrogen			Oxygen				
Isotopes		H_{1}^{1}		H_{1}^{2}		O_{8}^{16}		O_{8}^{17}	O_{8}^{18}
Abundance		99.985\%		0.015		99.762		.038\%	0.2\%
Mw [amu		1.0078		2.014		15.995		6.999	17.999

- The energy of a diatomic molecule is a function of its vibrational frequency (v):
$\boldsymbol{E}=1 / 2 \boldsymbol{h} \boldsymbol{v}, \mathrm{~h}$ (Plank's constant) $=5.626176 \times 10.3 \mathrm{~s} / \mathrm{Hz}$
- When a light isotope is replaced by a heavier one in a diatomic molecule, the vibrational frequency decreases; which results in the energy of the molecule
> This decrease in the energy results in strengthening the covalent bond
> A consequence of molecule containing the heavy isotope are more stable \& less reactive than those with the light ones
- The masses of isotopes determine the velocities of molecules of a particular gas at a given T
> all molecules of an ideal gas have the same kinetic energy at specified T: $\boldsymbol{E}_{\boldsymbol{K}}=1 / 2 \boldsymbol{m} \boldsymbol{v}^{2}$
So 2 isotopic varieties of a molecule having different masses have the same kinetic energy,
then:

$$
\begin{gathered}
1 / 2 m_{H} v_{H}^{2}=1 / 2 m_{L} v_{L}^{2} \& \frac{v_{L}}{v_{H}}=\left(\frac{m_{h}}{m_{L}}\right)^{1 / 2} \\
\left.m_{h} / m_{L}>1 \text { (i.e. } v_{L} / v_{H}>1\right)
\end{gathered}
$$

For 12C $160 \& 13 C 160$

$$
\frac{v_{L}}{v_{H}}=\left(\frac{m_{h}}{m_{L}}\right)^{1 / 2}=\left(\frac{28.998}{27.995}\right)^{1 / 2}=1.0178
$$

- The existence of 2 H stable isotopes $\& 3 \mathrm{O}$ stable isotopes makes 9 different combinations of water molecule (The masses range from 18.010565 to 22.02716 amu):

$$
\begin{gathered}
\mathrm{H}_{2}{ }^{66} \mathrm{O}, \mathrm{H}_{2}{ }^{17} \mathrm{O}, \mathrm{H}_{2}{ }^{18} \mathrm{O} \\
\mathrm{HD}^{16} \mathrm{O}, \mathrm{HD}^{17}, H^{17} \mathrm{O} \\
\mathrm{D}_{2}{ }^{16} \mathrm{O}, \mathrm{D}^{17} \mathrm{O}, \mathrm{D}^{18} \mathrm{O}
\end{gathered}
$$

The difference between $\mathrm{D}_{2}{ }^{18} \mathrm{O} \& \mathrm{H}_{2}{ }^{16} \mathrm{O}=\mathbf{2 2 . 3 \%}$
MATHEMATICAL RELATIONS

- The isotopic composition of all isotopes that are affected by fractionation is expressed by the parameter R $\boldsymbol{R}=\frac{\operatorname{Heavy}(\boldsymbol{H})}{\operatorname{Light}(\boldsymbol{l})}$
EXAMPLE for 180 \& 160 (A\%: 180: $0.2,160: 99.762$)

$$
R=\frac{\operatorname{Heavy}(H)}{\operatorname{Light}(l)}=\frac{O^{18}}{O^{16}}=\frac{0.2}{99.762}=2.005 \times 10^{-3}
$$

- The isotopic composition of oxygen \& hydrogen are measured by mass spectrometry \& expressed relative to SMOW \{Standard Mean Oceanic Water\}
- Delta Notation (δ): The differences in isotopic ratios (are relatively small \& expressed as parts per thousand, deviations from a standard)

$$
\delta_{x}=\frac{\boldsymbol{R}_{x}-\boldsymbol{R}_{\text {standard }}}{\boldsymbol{R}_{\text {standard }}} \boldsymbol{x 1 0 0 0} \%
$$

	Relative to a standard (oceanic water)
$+\mathbf{v}$	The sample is enriched in the heavy
isotopes	

- When water evaporates at equilibrium under constant P , isotopic composition of the vapor differs from that of the remaining water due to isotope fractionation during the evaporation
- Fractionation factor: The extent of fractionation

$$
\begin{gathered}
\alpha_{b}^{a}=\frac{R_{a}}{R_{b}} \rightarrow \text { for } H_{2} O_{(g)}: \alpha_{\text {vapor }}^{\text {liquid }}=\frac{R_{l}}{R_{v}} \\
\alpha_{v}^{l}(O)=\frac{R_{l}}{R_{v}}=\frac{\left(O^{18} / O^{16}\right)_{l}}{\left(O^{18} / O^{16}\right)_{v}}=1.0098 \\
\alpha_{v}^{l}(H)=\frac{R_{l}}{R_{v}}=\frac{(D / H)_{l}}{(D / H)_{v}}=1.84
\end{gathered}
$$

- fractionation factors decrease with increasing temperatures \& approach a value of 1
- In case of isotope fractionation between 2 phases a \& b in isotopic equilibrium, the isotope composition of element in phase $a \& b$ are:
$\delta_{a}=\frac{R_{a}-R_{\text {standard }}}{R_{\text {standard }}} x 1000 \%$ \& $\delta_{b}=\frac{R_{b}-R_{\text {standard }}}{R_{\text {standard }}} x 1000 \% 0$
$R_{a}=R_{s}\left(\delta_{a}+10^{3}\right) \times 10^{-3} \& R_{b}=R_{s}\left(\delta_{b}+10^{3}\right) \times 10^{-3}$ Then:

$$
\begin{gathered}
\alpha_{b}^{a}=\frac{R_{a}}{R_{b}}=\frac{R_{s}\left(\delta_{a}+10^{3}\right) \times 10^{-3}}{R_{s}\left(\delta_{b}+10^{3}\right) \times 10^{-3}}=\frac{\delta_{a}+1000}{\delta_{b}+1000} \\
\ln \left[\alpha_{b}^{a}\right] \approx \frac{1}{T\left[{ }^{\circ} C\right]} \\
10^{3} \ln ^{\alpha_{b}^{a}} \approx 10^{3}\left(\alpha_{b}^{a}-1\right) \approx \Delta_{a-b} \\
\Delta_{a-b} \approx \delta_{b}-\delta_{a}=\frac{A}{T^{2}} \times 10^{6}+B
\end{gathered}
$$

METEORIC PRECIPITATION

- lightest water $\left(\mathbf{H}_{\mathbf{2}}{ }^{\mathbf{1 6}} \mathbf{O}\right)$ evaporates preferentially relative to the heaviest molecule ($\mathrm{D}_{2}{ }^{18} \mathrm{O}$)
- heaviest molecule in water vapor condenses preferentially relative to lightest molecule, so:
$>$ depleted in $D \&{ }^{18} \mathrm{O}$ relative to sea water
$>$ Condensate enriched in $D \&{ }^{18} \bigcirc$ relative to the vapor

EXAMPLE If you've got a sample of water vapor from an ocean, the water T is $20^{\circ} \mathrm{C}$, calculate the delta Notation (δ) for 180 \& D in this sample using the previous diagram

$$
\text { at } 20^{\circ} \mathrm{C}: 10^{3} \ln ^{\alpha_{v}^{l}(O)}=9.7702 \rightarrow \alpha_{v}^{l}(O)=1.00982
$$

$a t 20^{\circ} C: 10^{3} \ln ^{\alpha_{v}^{l}(D)}=80.9855 \rightarrow \alpha_{v}^{l}(D)=1.08436$

$$
\begin{gathered}
\alpha_{v}^{l}\left(O^{18}\right)=\frac{\delta_{l}+1000}{\delta_{v}+1000}=\frac{1000}{\delta_{v}+1000}(\text { because } L=S t) \\
\delta_{v}(O)=\frac{1000}{1.0098}-1000=-9.70 \% 0 \\
\delta(D)=\frac{1000}{1.084}-1000=-77.49 \%
\end{gathered}
$$

PROBLEMS

- Calculate $\delta^{18} \mathrm{O}$ of water vapor in equilibrium with liquid water at $10^{\circ} \mathrm{C}$ assuming $\delta^{18} \mathrm{O}_{1}=-$ 10.0% (SMOW) \& $\mathrm{a}_{1}=1.0105$

$$
\begin{gathered}
\alpha_{\mathrm{v}}^{\mathrm{l}}=\frac{R_{l}}{R_{v}}=\frac{\delta_{l}+1000}{\delta_{v}+1000}=1.0105 \\
\frac{-10+1000}{\delta_{v}+1000}=1.0105 \\
\delta_{v}=-20.3 \%
\end{gathered}
$$

- Calculate $\delta^{18} \bigcirc$ of liquid water vapor in equilibrium with vapor water at $10^{\circ} \mathrm{C}$ assuming $\delta^{18} \mathrm{O}_{\mathrm{g}}=-25.0 \%$ (SMOW) \& $\mathrm{a}^{\mathrm{v}_{1}}=1.0105(-14.8 \% \mathrm{o})$

$$
\begin{gathered}
\alpha_{\mathrm{v}}^{\mathrm{l}}=\frac{R_{l}}{R_{v}}=\frac{\delta_{l}+1000}{\delta_{v}+1000} \\
\alpha_{\mathrm{v}}^{1}=\frac{\delta_{l}+1000}{-25+1000}=1.0105 \\
\delta_{l}=-14.8 \%
\end{gathered}
$$

- Calculate the value of α_{v}^{1} (at 35° from diagram)

at $35^{\circ} 10^{3} \ln \alpha_{\mathrm{v}}^{1}\left({ }^{18} 0\right) \approx 8.0 \rightarrow \alpha_{\mathrm{v}}^{1}=1.00803$

