ENVIRONMENT&L GEOLOGY (GEOLOGY 102)

BY SHAAS N HAMDAN

TEST BANK | MIDTERM EXAM

MIDTERMEXAM

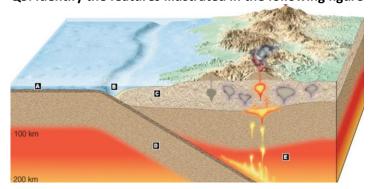
CHAPTER THREE PLATE TECTONICS THEORY

Shaas N Hamdan

Q1: Fill in the space to complete the following sentences

Q2: answer the following questions as True (T) or False (F)

- 1. In the rocks fault are produced by plastic deformation
- 2. Ductile behavior characterized most of surface rocks
- 3. Rocks are stronger under tension than compression
- 4. Deeper earthquakes occur frequently under tranche
- 5. Divergent boundary is characteristic by normal faults
- 6. The elastic deformation occur in which the materials returns to original size & shape after removal of stress
- 7. A transform fault is a type of strike-slip fault & reflects stresses acting Vertically
- 8. The rock in the continental crust are rich in ferromagnesian minerals
- 9. In rock folds are produced by ductile deformation
- 10. Sediments ages & thickness decreases with increasing distance from mid oceanic ridges (MORs)
- 11. The lithosphere consists of both crustal rocks & a portion of the upper mantle
- 12. To explain continental drift, Wegener proposed that the continents broke through the oceanic crust, much like ice breakers cut through ice
- 13. The supercontinent of Pangaea began breaking apart about 200 million years ago
- 14. Lithospheric plates are thickest in the ocean basins
- 15. Alfred Wegener proposed the Plate Tectonic Theory to explain the motion of the continents
- 16. Transform faults can join two segments of a MORs
- 17. Seafloor spreading result of ocean-ocean convergence
- 18. The rate of plate movement is measured in Km/yr unit
- 19. Unequal distribution of heat inside Earth generates thermal convection in the crust that drives plate motion


Q3: Answer the following questions briefly

- How mantel plumes & hotspot activities can monitor the rates & direction of a plate movement
- 2. What is the mechanism for plate motion?
- 3. Observations that leds to existence of continental drift
- 4. Observations that leds to existence of plate tectonics
- 5. Continental drift hypothesis was rejected, Why?
- 6. Strain may be temporary or permanent depending on
- 7. What are the steps of contental rifting?
- 8. Rates & directions of plate movement determined by?
- 9. How we are locating the plate boundaries?
- 10. The activities that may occurs at subduction zones?
- 11. Scientific explanation for the Himalayas & Appalachian?
- 12. The mid-oceanic ridges arn't straight. Why?
- 13. The layers below the asthenosphere appear to be more rigid & elastic than the asthenosphere. Why?
- 14. What are the types of stress?
- 15. What is the types of deformation that may occurs?
- 16. What is the types of materials within the earth?
- 17. How can the Plate Tectonics leds to precipitation of valuable deposits in the oceanic crust?
- 18. The continental rifting process are initiated by what?
- 19. Materials respond differently to given stresses. Why?
- 20. The asthenosphere makes the continental drift more plausible. How?

Q4: Defined briefly the following terms

- 1. Polar wandering curve
- 2. Continental Drift Hypothesis
- 3. Seafloor spreading
- 4. Mid oceanic ridge
- 5. North African Rift system
- 6. Subduction zone

Q5: Identify the features illustrated in the following figure

Q6	: Choice the correct answer	n the following sentences	17.	. The type of plate boundar	ry where plates move apart,
1.	MORs represent regions wh	ere lithospheric plates are		resulting in upwelling of r	naterial from the mantle to
	A. sliding past each other	B. Spreading apart		create new seafloor, is a	
	C. Colliding	D. Non of the above		A. Transform fault	B. Divergent Boundary
2.	Transform faults are associa				D. Convergent Boundary
	A. Divergent Boundary	B. Convergent Boundary	18.	During oceanic-continental	convergence, as the oceanic
	C. Subduction Zone			plate slides beneath overr	_
	Continental Volcanic Arcs is			is often produced adjacent	
	Oceanic-Continental Conver			A. Transform fault	
		_		C. Deep-ocean ridge	
	Continental-Continental Div	_	10		•
	Oceanic-Oceanic Convergen		19.	Divergent plate boundaries	
4.	Which of the following i			A. Normal & Reverse	
	Wegener in support of cont			C. Destructive	
	A. Paleoclimate		20.	. The longest topographic fe	
	C. Rock structural Similarity	D. Earth Layers thickness		A. Oceanic Ridge	B. Himalayas Mountains
5.	The east African Rift zone is	an example of		C. E-African Tribel Junction	D. Marianas Trench
	A. Convergent Boundary	B. Subduction Zone	21.	. Image of normal and rever	se magnetism
	C. Divergent Boundary	D. Hot Spot		A. Present	B. Mirror image
6.	The oldest seafloor rocks ar	•		C. Random	
	A. 300-500Ma		22		tures that extends from the
		D. 600-700Ma	22.		ray Island & then continues
					eutian trench have formed
7.	The magnetic minerals loss	_			
	orientation as heated above	•		over a as th	-
	A. Hess Poit	B. Einstein Point		A. Volcanic island arcs	•
	C. Wegener Point			C. Subduction zone	
8.	The oldest oceanic lithosphe	ere is found in	23.	. New oceanic crust along th	e ridge will cool &
	A. Atlantic Ocean	B. Pacific Ocean		A. Slide down the ridge	
	C. Redsea Ocean	D. Indian Ocean		C. Push upward	D. Cannot move
9.	The youngest oceanic lithos	phere is found in	24.	The circular motion of conv	
	A. Atlantic Ocean			A. Differences in heat	
	C. Redsea Ocean			C. Independent of heat	
10	The general term that ref		25	•	ivity, volcanism, & mountain
10.	_	the formation of structural	25.	building occur along	ivity, voicamsin, & mountain
	features such as mountains			_	D. Dandam trands
				A. Lines of magnetism	
	A. Subduction	B. Mass wasting	2.6	C. Hot spots	D. Plate Boundaries
	C. Volcanism	D. Tectonics	26.	_	bit a pattern or orientation
11.	The name given by Alfred	-			day magnetic field is labeled
	he believed existed prior co	ntinents was		A. Abnormal Polarity	,
	A. Pantheon	B. Pangaea		C. Reverse Polarity	D. Normal Polarity
	C. Euroamerica	D. Atlantis	27.	. The seafloor spreading hyp	othesis is supported by
12.	Beneath Earth's lithosphere	e, the hotter, weaker zone		A. Magnetic Anomalies	B. Age of sediments
	known as the	allows for motion of		C. Drilling of the oceans	D. All of them
	Earth's rigid outer shell.		28.	Glacial deposits covering	g extensive areas of the
	_	B. Asthenosphere			nisphere, including India, 300
	C. Outer core	D. Moho Boundary		million years ago is evidend	•
12	Earth's rigid outer shell is ca	· ·		A. Ancient mountain rings	
13.	A. Lithosphere	B. Hydrosphere		C. Global Climate	D. All of them
	•	• •	20		
	C. Asthenosphere	•	29.	-	t of a continental volcanic arc
14.	Complex mountain syste	-		associated with	
	Appalachians, & Himalayas			. Oceanic-Continental Conve	_
	Oceanic-Continental Conver			. Continental-Continental Co	
В.	Continental-Continental Cor	nvergence Boundaries	C.	. Oceanic-Oceanic Converge	nce Boundaries
C.	Oceanic-Oceanic Convergen	ce Boundaries	D	. Hot Spot & Mantle Plumea	
D.	Hot Spot & Mantle Plumea		30.	. The magnetic time scale ov	ver the last few million years
	Average of rates of seafloor	spreading is cm/vr		was developed using	•
	A. 2-3	В. 3-4		A. Lava flows	B. Oceanic floor
	C. 6-7	D. 9-10		C. Radioactive Dating	
	Red Sea is believed to be th		21	Ridge push is most importa	
±υ.	A. Gradational boundary	•	31.	A. Divergent Boundary	B. Subduction Zone
	•			_ ,	
	C. Hotspot	D. Convergent Boundary		C. Mantle-Core Boundary	D. Moho Boundary

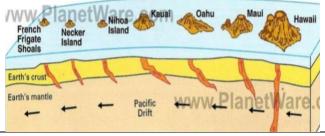
ANSWERS **Chapter Three** Question One (Q1) **More Plastically** 2 Polar-Wander Curve 3 Toward 4 Hotspot Stress & Strain (respectively) Question Two (Q2) 2 3 5 6 10 F F F Т Т Т Т F Т F 11 12 13 14 15 16 17 18 19

Hot Spots is the area of high heat flow & volcanic activity attributed to rising warm mantle plumes that originating at mantle-core boundary. However, the hot spots remain fixed in their position & lithospher move over them, so the result should be a volcanoes of differing ages with the youngest closest to the hot spot & oldest away from hotspot (e.g. Hawaiian) in which the orientation of islands indicates direction of plate movement, & the kink indicates tha changes in the direction of movement through time, & the ages of the rocks indicates the rate of plate movement

T

Т

Т


F

F

Question Three (Q3)

Т

F

The plate motion are derived by convection cells that result of unequal distribution of heat & density within the earth & take place within the mantle, as hot materials rises up leds to ridge push (i.e. seafloor spreading at MORs) & cold materials rises down leds to slap pull & slap suction (i.e. oceanic tranche), & transform fault take place in between.

- Fit of the continents: similarity in coasts of different continents (e.g. Africa & S-America)
- 2. **Paleoclimate**: glacier deposits & jungle plants
- 3. Structural similarity: age, fossils, & chemistry between mountains in different continents
- 4. Palefossils: e.g. Mesosaurus
- 1. Polar-Wander curve of the continental rocks
- 2. Paleomagnetism near mid oceanic ridges
- 3. Seafloor spreading: the age of sediments & basalts decreases away from mid oceanic ridge
- Topography of the oceanic crust: mid oceanic ridge, trenches, volcanoes, island & volcanic arcs

ANSWERS

Chapter Three

- Lack of the mechanism for moving the continents (Wegener proposed that continental crust move through the oceanic crust like ice cut with ice!)
 - The amount & type of stress applied
- 6 The physical properties of the material
 - The time in which stress was applied
 - Upwarping & Doming: due to magma that rises beneath the continental crust
 - 2. Faulting: due to heat from the magma
 - 3. Continental Rifting (Depression): due to faulting that weaken the rocks (such as Afar depression)
 - 4. Linear Sea: water collects in the depression areas forming sea (such as Gulf of Aqaba)
 - Mid oceanic ridges & seafloor spreading
 - 1. Polar wandering curve
 - Seafloor spreading & Age of seafloor
 - Mantle Plumes & Hotspots
 - Satrllite Technology
- By maping of earthquicks & volcanic activities that concentrated at plate boundaries
 - 1. Place of accumulate of terigenous sediments
 - 2. Volcanoes form where molten material rises up
- 3. Island arcs: a line of volcanic islands
 - 4. Earthquicks due to Great stresses
 - 5. Mountain building

Continental- Continental convergance, in which India was drifted toward Asia & Himalayas were built up, & 11 Appalachian were built in the same way as Africa & N-America converged prior to Pangaea breakup

- The MOR consist of short segments slightly offset from one 12 another (fault, or break in the lithosphere known as a transform fault)
- 13 Confining Pressure increase faster than Temperature
 - **Compressive**: Squeeze or compress the object
- 14 **Tensile**: Pull the object apart
 - Shearing: slides objects past each other

Elastic: The material returns to its original size & shape

Plastic: The changes are permanent

Rupture: If stress increased, solids break or rupture

Ductile: High plastic deformation without breaking 16

Brittle: Rupture before plastic deformation

As seawater circulates via fresh & hot lithosphere, it is heated, reacts with the rock, & become metal-rich, & as 17 gushes back out of the sea floor, cooling & reacting with cold seawater & precipitate valuable deposits

- 1. Tensional forces pulling the plates apart 18
 - 2. Rising hot asthenosphere along the rift zone
- Rate of stress, time of stress applied, & type of materials
- continents need not scrape across or plow solid rock but 20 they can be pictured as sliding over a softened & layer

SHAAS N HAMDAN

Question Four (Q4) Is a curve that showing the apparent movement of the													
1		s a cu nagnet				_					of th	ıe	
2	s	is the throry by Alfred Wegener, State that all of the continental crust had once formed a single supercontinent, called Pangaea, about 200Ma, which had then split apart & moving to their present positions											
3	li	is the divergent boundary where formation of new oceanic lithosphere take place, in which the basalt & sediments are youngest & thinner close to Mid-Oceanic Ridge (MOR)											
4	le	is the longest topographic future on the earth's surface, & located where sea floor spreading take place, in which new oceanic lithosphere are create & older one bushed away											
5	is	is the triple junction in which Afar Depression & Aden Gulf is passive parts & red sea is active part (where sea floor spreading tack place)											
6	c p	is the area where one plate pushed under the other & descend into the asthenosphere where subjected to higher pressure & metamorphosed into denser rocks or undergo to partial melting											
				Q	uesti	on Fiv	re (Q5	5)					
Α		ceani	c crus	t				-					
В		ceani	c tren	ch									
С	(Contine	ental c	rust (& Ove	erridi	ng pla	te)					
D		ubduc											
Ε	P	sthen	osphe	re wh	ere p	artial	melti	ng tal	ke pla	ce			
				Q	uesti	on Fiv	re (Q5	5)					
									11				
	В	Α	Α	D	С	С	D	В	Α	D	В		
	12	13	14	15	16	17	18	19	20	21	22		
	В	Α	В	Α	В	В	D	В	Α	В	В		
	23	24	25	26	27	28	29	30	31				
	Α	D	D	С	D	В	Α	D	Α			i i	

MIDIERMEXAI

CHAPTER FOUR EARTHQUAKES

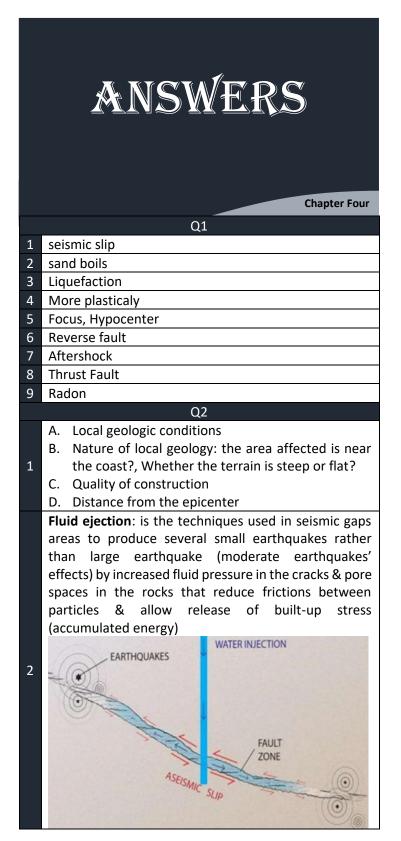
Shaas N Hamdan

Q1	Fill in the space to complete the following sentences	12. A transform fault is a type
1.	Creep sometimes termed that meaning	stresses acting Vertically
	displacement occurs without earthquakes activities	Q4 Choice the correct answer
2.	Signs of liquefaction include that formed	1. One of the following is prin
	as liquified soils bubbles to the surface during quake	A. Ground rupture & fault
3.	expansion of wet soll as freezes	B. Tunami
4.	At high T rocks tend to behave	C. Fire
5.	is a point on the fault at which	D. Flooding
	first movement occurs to produce earthquakes	2. Earthquake of magnitude 5
6.	dip-slip fault in which the block	about timas end
	above the fault moved up relative to the block below	A. 30.0
7.	is an earthquake that follow the	B. 900.0
	main shock & has less magnitude than main shock	C. 1,000.0
8.	a shallow dipping reverse fault	D. 27,000.0
9.	Changes in the continent of gas	3. In the San Francisco ear
	is an important factor in the earthquakes production	following harards caused th
		 A. Ground mation
Q2	Answer the following questions briefly	B. Landslides
1.	The surface affects produced by earthquake of a given	C. Tsunami
	magnitude vary as a result of (3points)	D Fire

- 2. Fluid Injection is a possible means of minimizing the risk of large earthquakes. How??
- 3. What are the type of seismic waves?
- 4. What is the liquification?

Q3 Answer the following questions with True(T) / False(F)

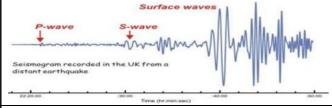
- 1. Saturation of unconsolidated materials reduces the friction between particles
- 2. Falls are common along rocky coastlines
- 3. The downslope pull tending to cause mass movements is called the shearing strength
- 4. Rock creep occurs more commonly than soil creep
- 5. In the rocks fault are produced by plastic deformation
- 6. Ductile behavior characterized most of surface rocks
- 7. Rocks are stronger under tension than compression
- Deeper earthquakes occur frequently under tranche
- Divergent boundary is characteristic by normal faults
- 10. The wavelength measures the intensity of earthquakes
- 11. The elastic deformation occur in which the materials returns to original size & shape after removal of stress


of strike-slip fault & reflects

n the following sentences

- ary hazard with earthquake
 - ng
- on the Richter scale releas rgy than magnitude 2
- hquake, which one of the e geatest damage
- 4. Most structural damage from earthquakes is caused by
 - A. Compressional waves
 - B. Body waves
 - C. Surface waves
 - D. Primary waves
- 5. The concept that major earthquakes occur in periodic intervals on a given fault zone is known as
 - A. Seismic cycle
 - B. Earthquake cycle
 - C. Earthquake period
 - D. Seismic probabilty
- 6. Transform faults are associated with
 - A. Divergent plate boundary
 - B. Convergerit plate boundary
 - C. Subduction zone
 - D. Hot spot & Mantle plume

https://wps.prenhall.com/esm tarbuck escience 11/32/8 321/2130282.cw/index.html


SHAASNHAMDAN

ANSWERS

Chapter Four

- Body waves: Travel through earth interior (Smaller in amplitude, cause less structure damage, & faster than surface)
 - a. P-Waves: Primary or Compressional waves, Compress & expand matter like Slinky toy, Fastest & Weakest wave, can travel through Liquid, Solid, or Gas
 - b. **S-Waves**: secondary or shear waves,involving a side-to-side movement, Faster than surface wave, slower than P, weaker than surface wave, & can travel through Solid only
- Surface waves: Larger in amplitude, cause more structure damage, & Slower than body waves. Cause rocks & soil to be displaced in such a way that the ground surface ripples or undulates, & similar to waves on water
 - a. Vertical motions (rhyleigh)
 - b. Horizontal shearing motions (love waves)

secondary hazard of earthquakes, occur when the wet soil is shaken (water seep between particle, reducing friction) & cause the buildings to sinks into the liquefied soil

Q3											
1	2	3	4	5	6	7	8	9	10	11	12
T	F	F	F	F	F	F	T	T	F	T	T
Q4											
			1	2	3	4	5	6			
			Α	В	D	С	В	Α			

SHAAS N HAMDAN