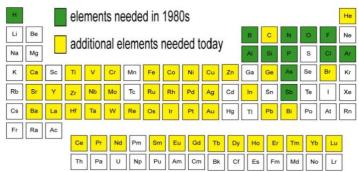
INDUSTRIAL EARTH RESOURCES SHAAS N HAMDAN

CHAPTER ONE

INDUSTRIAL MINERALS


Shaas N Hamdan

 Industrial Minerals: any rocks, minerals, or other naturally occurring materials of economic value, including metallic minerals, non metallic materials, energy minerals, gemstones, & aggregates

Example	Uses
Bauxite	Ore for aluminum & alumina compounds
Titanium	Ore for Ti, TiO₂, & white pigments (اصباغ)
Sulfur	From pyrite, by-product of Cu-Pb-Zn mining
Diamond	Gemstone, & used in industrial applications
Garnet	Gemstones, & used in abrasive (الجلخ)

- Aggregate: materials that used in construction, such as sand, gravel, crushed stone, slag, or recycled crushed concrete, fillers & extenders to a certain degree
- Importance of the industrial minerals:
 - 1. Our world is made of the industrial minerals!
 - 2. Building blocks of our way of life
- Green technology (environmental technology or clean technology): technology that conserve energy & natural resources, reduce the -ve impacts of human activities (i.e. environmental friendly) & includes the following
 - 1. Alternative power: wind turbines, & solar energy
 - 2. Hybrid & electric cars, Batterie, & Magnets
 - 3. H_2O purification, Desalination, C-capture & storage
 - 4. **Critical Minerals**: required for national defense, & we export >75% of these minerals (e.g. Al & Be from Beryl, Bismuthinite, & Beryllium tuff)

Industrial Minerals Classification					
Alphabetical Obscures links between commodities					
Geologic Igneous, Sedimentary, or Metamo					
processes	Misses waste & processes materials				
Tectonics Important properties, & chemica					

- Without a market, industrial mineral deposit is merely a geological curiosity. Demand feeds back from the end-use market, to the end product, to the intermediate end product, & finally back to the mineral supplier
- Most industrial minerals are widespread, have enormous reserves, easy accessible, & mined by small operations
- Economics development needs less investment, cheaper to obtain (closer to market, & some minerals demand a higher market price than metals), & are more effective
- **Technological needs** less processing, less energy, less environmental effects, & possess exceptionally attractive properties for the industry
- challenges in producing industrial materials:
 - 1. **Sustainable development**: Provide society with its needs, protect future sources, limit landscape alteration & affect local community as little as possible
 - 2. How much of industrial minerals do we need? Are there enough materials to meet demand for technologies?
 - 3. Can by-product be recycled?
 - 4. Are these minerals environmental friendly? & What are reclamation challenges? (REE & Be associated with U-Th, mining REE will accommodate radioactivity & radon)
 - 5. **Conflict minerals**: Conflict Minerals Trade Act & provide major revenue to armed fraction for violence (e.g.Congo)

	Uses & Technologies of Industrial Minerals																						
	As	Bu	Ва	Br	Cl	Di	Dim	Do	Gyp	Gra	Gar	Lim	Mg	Pu	Ре	Ph	Ру	Ра	Si	So	Ti	Та	Ze
Construction					<	~	~		<			<			<								
Metallurgical	>	<	<					>		<	>		<	>					>				
Chemicals		<	<	<				<				<	<	<		<							<
Agricultural				<	<			<							<	<		<				<	
Glass & Ceramics		>		>	>												>		>	>		>	
Fillers & Extenders			~		~	~			~			~								~	>		
Energy					~					~			~										
Environment	~	~						~	 Image: A set of the set of the			~	~		~		<						 Image: A start of the start of

As = Asbestos, Bu = Alumina & Bauxite, Ba = Barite, Br = Borates, Cl = Clay & Mud & Clays minerals, Di = Diatomite, Dim = Dimension stone (Granite, Marble...), Do = Dolostone & Dolomite, Gyp: Gypsum, Gra = Graphite, Gar = Garnet, Lim = Limestone, Mg = Magnesite, Pu = Pumice, Pe = Perlite, Ph = Phosphate, Py = Pyrophyllite, Pa = Peat, Si = Silica & Quartz, So = Soda Ash, Ti = Titanium minerals, Ta = Talc, & Ze = Zeolite

MINING & HISTORIC CULTURE

Important Cultural Eras				
4000 BC	Stone Age			
4000 - 5000 BC	Bronze Age			
1500 BC - 1780 CE	Iron Age			
1780 - 1945	Steel Age			
1945 - present	Nuclear Age			

- Uses of industrial minerals in ancient societies:
 - 1. Egyptians replaced water clocks with sand hours
 - 2. Greek & Romans made concrete-like structures
 - 3. Building stones used in many ancient cultures

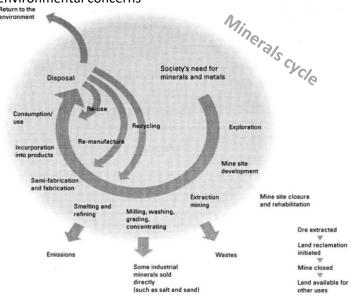
	•					
	When was the first mine?					
Prehistory	Mining began in prehistory, ancient cultures settled around areas to provided raw materials					
450Ka	Prehistoric man used chert & flint as tools					
300-100Ka	Mining of flint in France & England					
40Ka	The first underground main (Hematite) Bomvu Ridge, Swaziland					
33Kyr	Nazlet Khater, Nile Valley, Upper Egypt					
4500 B.C.	 Krzemionki Opatowskie, Southern Poland 1. Upper Palaeolithic 2. Middle and Neolithic (4500 B.C.) 3. Early Bronze Age 					
4Ka	Soapstone using, Maritime Archaic peoples					
	Old Testament recognized the land of Ophir (Zimbabwe) in Africa, as a source of gold African mine: Zimbabwe 26Ka, Swaziland 50Ka					

TABLE SALT (HALITE)

- **Table salt (NaCl) or halite** is essential to life (man requires 2-5 gr/day of salt)
- was used as
 - (الدباغة) tanning (مواد حافظة)
 - Was used to preserve Egyptian mummies
 - Trade in salt (تجارة الملح) was very important: valuable to be used as currency (Salt cakes)
- Uses in Religions:
 - 1. Greek worshippers consecrated salt, covenants were sealed with salt Jewish tradition & law, involves dehydration of meat for its preservation
 - 2. Catholic Church used salt in purifying rituals
 - 3. Buddhist believed salt repeals evil spirits
 - 4. Pueblo people worship the Salt Mother
 - Salt in Austria: Heilbad Durrnberg, 750-150 BC
- Estancia Basin in central New Mexico
 - Salt basin important in trade by 13th century
 - Spanish conquest, built churche, & demanded salt
 - Spanish shipped salt to Mexico for processing silver
- Salt & Silver Processing by Patio process (1557)
 - silver ores crushed to a fine slime & mixed with salt; water; Cu-sulfate; & Hg, then spread into a patio & allowed to dry in the sun light. silver could then amalgamate with mercury
- End of an Era: by the late 1670s the entire Salinas District, as the Spanish had named it, was depopulated
 - Apache raids increased, Famine, Poor harvests, Pueblo revolt in 1680

TURQUOISE (TURKEYSTONE)

- Turquoise CuAl₆(PO₄)₄(OH)₈H₂O believed to bring good fortune, success, health, protect from danger, & disease
- Properties: Isn't a hard (hardness = feldspar), brittle & susceptible to fracture (similar to ivory), may discolor from heat, oils, soaps, chemicals, perfume, & exposure to the sun & air. So employed in jewelry is treated to enhance color or to seal it against contaminats



 Sources of turquoise are differentiate using isotopes, & Found near Cu-deposits in arid to semiarid environments near the surface

- Localities:
 - Egyptians some 70 centuries ago the oldest mine on Sinai Peninsula evidence is bracelet of turquoise & gold found on the mummified arm of queens
 - 2. Burro Mountains, New Mexico
 - 3. Cerrillos mining district, New Mexico
 - 4. Kingman, Arizona
 - 5. Morenci, Arizona
 - 6. Conejos, Colorado
- Mines on Turquoise Mountain, Cerrillos: the oldest known source of turquoise in the Southwest. Spanish noted that Native Americans were mining about 1500AD, probably began 700AD, found as far as Oaxaca, Mexico & eastern United States. kings and emperors of the Mixtec & Aztecs wore crowns & pendants of turquoise for good fortune and long life

CHANGES FROM PREHISTORY

Need for more commodities, Technology, Global market, & Environmental concerns

CHAPTER TWO RESOURCES, RESERVES, & AGGREGATES

Shaas N Hamdan

RESOURCES & RESERVES

 Resources: any valuable inorganic or organic materials, that possible to mine & can be extracted at a profit from crust (Lithosphere, hydrosphere, & Atmosphere) whose use may impact these parts of the crust

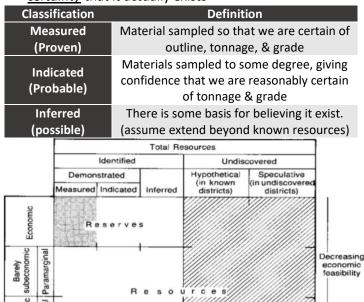
Classification of Natural Resources

Renewable Non renewable

Materials that replenished on short time scale (during Human life) e.g. solar, plants, Water... Fixed quantity & not replenished by on short scale (e.g. oil, mineral deposits, etc...)

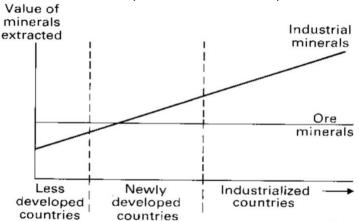
 Mineral resources: non living N.O. substances, or is the concentration of natural solid, liquid, or gas within crust, that could be extracted economically

Resources Groups						
Energy resources	Petroleum (oil & natural gas): major for human Alternative energy: wind, tidal, & solar					
	Other fuel resources: Coal, & Uranium					
Metallic	Chemical element of single or alloys (valuable)					
resources	Fe, Cu, Al, Pb, Zn, Au, Ag					
Nonmetallic resources	 Is a natural resource that is very important Sandstone, Granite used for construction Calcite main ingredient in cement Red clay used to make bricks Sand, Gypsum, & sulfur in everyday items Halite used as chemical fertilizers Soil & Water: used by plants (for life) 					


• **Petroleum**: material forms within Earth, can be burned to produce heat & electricity or made into gasoline

Types of Non-fuel Mineral Resources

Types of Non-fuel Mineral Resources					
	1.	Precious metals: Au, Ag, platinum group			
	2.	Non-ferrous (base) metals: Cu, Pb, Zn, Tn, Al			
Metals	3.	Ferralloy (Iron): Fe, Mn, Ni, Cr, Mo, Tn, V, Co			
	4.	Minor metals & non-metals: An, Ar, Be, Bi,			
		Cd, Mg, Hg, REE, Se, Ta, Te, Ti, Zn			
	5.	Fissionable metals: uranium			
Gemstone		Diamonds, emeralds, rubies, garnet, etc.			
		Any rock, mineral or naturally inorganic			
		substance of economic value, exclusive of			
Industrial		metallic ores, mineral fuels, & gemstones			
Minerals	•	Include minerals such as barite, halite,			
		gypsum, phosphate, diamonds, & garnet; in			
		addition to aggregate & dimension stone			
Dimensional stone: is the rock that is cut & can be used					


- Dimensional stone: is the rock that is cut & can be used as a building materials
- هي التنمية التي تلبي احتياجات :Sustainable development الحاضر دون التأثير على قدرة الاجيال القادمة من تلبية احتياجاتها الخاصة

- For best comparisons on the resources, the classification scheme of the resources is based on:
 - 1. **Geological characteristics**: grade & tonnage of the deposits, thickness & depth of the deposits
 - 2. Profit assessment: Prices, Values, & Extraction cost
- Resources classification: may be <u>identified or</u> <u>undiscovered</u>, & classified based on the <u>degree of</u> <u>certainty</u> that it actually exists

Increasing degree of

 Relative Importance of Industrial Minerals & Metals Exploitation in Evolving Economies: Mature economies are characterized by a greater economic importance of industrial mineral production than metals production

Industrial Earth's Resources

Shaan N Hamdan

AGGREGATES, CONCRETES & ROADS CONSTRUCTIONS

- Economically: larger sector of mineral productivity, require little or no processing (can be sold directly) & may require firing processing (command higher prices)
 - Aggregates demand controlled by market & source
 - USA & Europe lack of aggregate sources (Import)
 - Aggregate sources in Jordan: Gravel, Sandstone, Igneous Rocks (Dolerite, Granite), Limestone, Dolomite, Railway Ballast (Igneous & Metamorphic)

Aggregate Sources	Used in
Igneous Rock	Construction industry
Sand & Sandstones	Glass industry
Limestone & Dolomite	Construction industry
	•

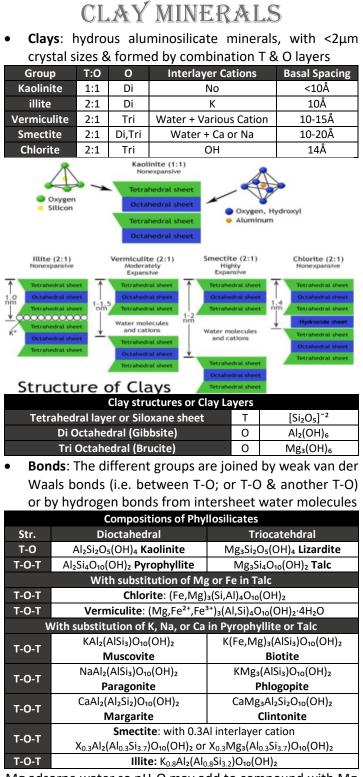
- What is Required of an Aggregates? (requirements)
 - 1. Provide strength & bulk, Land fill-strength & shape
 - 2. Tarmac or concrete
 - 3. Properties of construction material, cement or asphalt depend on the properties of the aggregates
 - 4. Density, Grading, Shape, Texture, Reactivity, & Water Absorption are taken into account
- **Concrete**: cement acts as a binder to hold aggregates & must be stable under conditions of use
 - Consist of 1:5 cement & aggregates (course & fine) respectively mixed in different proportions
 - Concrete strength are measured for finished material & raw aggregates
 - For concrete using, Aggregate are routinely tested as for road (Especially 10% fines value & AIV)
- Aggregate Reactivity: problems of concrete apparent after constructions, some materials prone to reactivity
 - Alkali-silica reactivity (ASR): reaction with quartz, glass, or amorphous silica
 - Alkali-carbonate (ACR): not problem in limestone aggregates & restricted to dolomite crystals that set within finer grained clay carbonate mixture
- **Road construction method** (RCM, Macadam): method of bind aggregate with bitumen to produce tarmacadam

	Aggregate for Tarmac & Road (RCM)						
	6-38 mm	Crushed rock					
Sub-base	0.5 m	Aggregate that must be Frost resistant					
	4.25 mm	Materials that must be Non-plastic					
Road-	<38 mm	Coarse aggregate bound by bitumen					
base	<20 IIIII	that should be Frost Resistance					
Base-	<38 mm	Coarse aggregate bound by bitumen					
course	<50 mm	that should be Frost Resistance					
Wearing-	19-25	Rolled asphalt with 30% coarse					
course	mm	aggregate & covered by bitumen					

- Structure of roads must be:
 - 1. Layered to provide layers with differing property
 - 2. Strong enough to take traffic weight
 - 3. Must be resist wear & provide frictional resistance

A	ssessment of A	ggregates for road constructions							
	Rough & Poo	rly Sorted grains maximize bonding							
ize	-	& smoothness are important in							
8	unbound material (Eliminate <0.075mm fraction)								
e	Size assessed by sieving (British Standard BS)								
Shape & Size	>5mm	Coarse aggregate							
S	<5mm	Fine aggregate							
~	Frost resistance is important under prevailing								
lity									
abi	climatic conditions in Northern Hemisphere Ability of aggregates to respond to volume								
nra									
р ц	-	ated with water ingress or freeze or							
Jen	-	be assessed petrographically							
hysio-chem-durability		nering index or to testing resistance:							
/sic		must be low with no variations							
, h	•	bility: must bond well with bituemen							
		ning resistance → lower strength							
	-	mbination of 3 tests that assessed							
		uidelines laid down under BS							
ء	Aggregate	Assessing intermittent load							
Jĝt	impact (AIV)	Low AIV <20 \rightarrow high resistance							
Strengt	Aggregate	Assessing continuous load							
s	crushing(ACV)	Low ACV \rightarrow high resistance							
	10% fines	Assessing load required to yield 10%							
	values	of the material <2.36 mm variation of ACV test							
	Aggrogato	lurable in service under ambient							
Z		ditions (to effect of water & frost)							
Mechanical durabilit		Polishing provides low resistance							
Ira	Polished	Higher PSV \rightarrow Higher resistance							
۹۲	stone	Ainimum acceptable PSV depends:							
ical	value	1. Traffic density							
ani	(PSV) 2	. Type of roads & junctions							
sch	Aggregate N	Aeasure wear of aggregate surface							
ž	abrasion	Lower values \rightarrow greater resistance							
	(AAV)	Acceptable Values range: 1-15							
	S	UMMARY							
	2								
		ssessment of							
Aggregates for road construction									
	100								
	Physical &								
e & Shape Chemical Strength Durability									
	Durability								
]]							
Poorly S	Sorted Lower P	olishing H Lower AIV Higher ASV							
•									

Lower AAV


Lower ACV

Size &

Larger Crystals

CHAPTER THREE INDUSTRIAL CLAYS

Shaas N Hamdan

Mg adsorpe water so nH_2O may add to compound with Mg

	KAOLINITE GROUP							
\wedge	7 1							
0.7 nm	1 	1.						
_								
Tetrahedral sh Octahedral she								
Hydroxide she								
Water & Mg ² Water & misco	cations ellaneous cations							
Kaolinite 1:1 Clay n	nineral	Mica 2:1	Chlorite 2:1 Clay mineral	Vermiculite	Smectite 2:1			
l	merar	2.1		2:1	2.1			
-								
	Kaalia	Non Expanding	differ by Cherly		nding			
Minerals			differ by Stacki plate, Dickite: (n layers			
			e single H ₂ O lay	•	a tubular			
			mical change of					
Formed	musco	vite into kao	in (Weathering	, Diagenesis, a	lteration)			
by			alloysite are for					
			es kaolin at dept					
Used in			ing, Coating, Su	urface pigmen	t on high			
e Kaolir		glossy pape	from tri-O n	nombor (ch	lorita) by			
			erals become	-				
	-		50°C. But he	•	•			
			e from chlori	-				
	-							
		•	are also wea	•				
			plex: Kaolin					
			oysite react v Kaolinite depos		lide			
Composed			other impuritie					
Properties		ite powder, whitness, brightness, valuable						
		d pure white clays & chemically simplicity						
Uses	Used	ed as filler or coating for paper						
 Major 	• Major impurities that reduce value of Kaolin deposits:							
1. F e	1. Fe-oxides & hydroxide : discoloured fired products							
2. S I	2. Smectite: influence behaviour, for paper coating							
3. Contaminant (e.g. silica & fine feldspar): produce								
abrasive slurry, that causes wear								
• Kaolir	• Kaolin may be discolord due to the existence of other							
	decomposed phases as biotite							
BAL	L CI	.AY (PLAS	FIC CL	AY)			
Composi	tion		illite, with trac aze, Fe-oxide, &					
Composi	tion	anataze, Fe-oxide, & organic matter						

Composition	Kaolinite & illite, with traces of smectite, quartz, anataze, Fe-oxide, & organic matter		
	, , , ,		
	Ceramic industry: provide strength & malleability		
Used in	Cement: binding non shrinking component in firing		
	In Moulding		

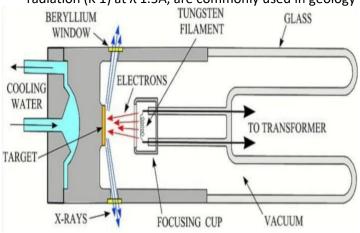
ILLITE GROUP

 Illite group: non-expanding, clay-sized, dioctahedral, micaceous minerals, similar to muscovite (T-O-T) but has more Si, Mg, Fe, & water & less Al & interlayer K, considered as alkali-deficient, Si & OH rich muscovite

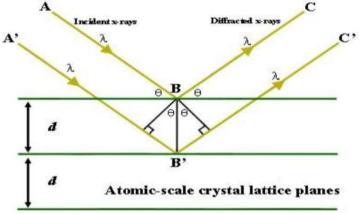
,			
Composition	K _{0.5-0.8} Al ₂ (Al,Si) ₄ O ₁₀ (OH) ₂		
	If 4> Si >3 (3.2) & 1> Al >0 (0.8)		
Minorala	Illite (with 0.8-0.9K), Hydromuscovite		
Minerals	Glauconite (green Fe-rich member)		
	Alteration of mica (alkaline condition) &		
Formed by	feldspars (in acidic conditions)		
Occurrence	Common constituents of shales		

- Illite mineral: dominant in argillaceous rocks (mudrock), forms by weathering of feldspar, alteration of other clays, or degradation of muscovite under alkaline conditions & high concentrations of Al & K
- Glauconite: Fe-member of illite group formed in marine & occurs in pelletal form. ethylene glycol, K-saturation, & heating to 550°C have no effect on their X-ray peaks SMECTITE (BENTONITE)
- Smectite group: is a very soft phyllosilicate group, consists of 2T:10 (di or tri) in which interlayer Al is 0.3, The particles are plate-shaped with diameter ≈ 1 µm

The particles are place shaped with diameter of 1 µm				
Cations	Ca & Na (In case of Na, adsorp larger water)			
Ndia avala	Beidellite, Montmorillonite (Mg- & Al-rich),			
Minerals	Nontronite (Fe-rich), Saponite, Palygorskite			
	Acidic conditions with poor drainage			
	• Low K^+ , & high Ca ²⁺ , Mg ²⁺ , Na, & SiO ₂			
Occurrence	Parent rock must be enriched in Ca or Na			
	• Smectite stability expressed as function of			
	acitivity-activity or activity-T diagrams			
	Chemical precipitate from solution			
Formed by	Hydrothermal alteration at high T & high K/H			
	ratio with silica contents exceed Qz saturation			
Used in	Drilling muds, construction, & fertilizers			
Droportion	high exchange capacity, & high ability to absorb			
Properties	H ₂ O (2 layer) that lead to expand			
Bentanite (Mentmerilluite), days of smostite group				

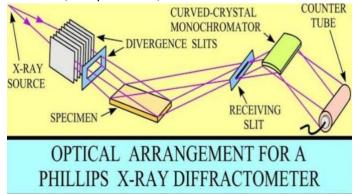

- Bentonite (Montmorillnite): clays of smectite group
 - 1. Sodium bentnite: Wyoming or Swelling bentonite
 - 2. Calcium Bentonite: non swelling bentonite
 - Engineering Bentonite: Ca-bentonite convert to Nabentonite by ion exchange (swelling capabelity)
 Bontonite: most dominant industrial closuring on the sector of the sector

Bentonite: most dominant industrial clay minerals				
Composition	Smectite (Montmorillonit, shrink or swell			
Composition	water layer), Volcanic Ash, & organic matter			
Proportios	CEC & chemical sorption properties,			
Properties	Chemically & Physically reactive			
	1. Source of volcanic ash			
Factors	2. Depositional basin in which the ash			
required to	accumilated by sorting processes &			
form a	react with seawater to yield smectite			
bentonite deposits	3. Deposit must protected from erosion			
deposits	(no further change in clay occurs)			
II I ITF-SMICTITE I & VER				


- ILLITE-SMICTITE LAYER
- Illite-Smictite Mixed layer (I/S): 80%illite : 20%smectite
- I/S reaction course as mudrock buried to depth 3700km

X-RAY DIFFRACTION

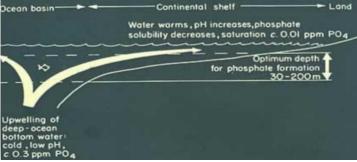
- X-rays: are electromagnetic radiation with low λ, & produced when charged particles are deacelerated
- In X-ray tube, high voltage in electrodes draws electrons toward a target (anode) & if incident X-ray encounters crystal lattice scattering occurs & X-rays are produced
 - Destructive interference: if waves come together in such a manner that they cancel each other
 - Constructive interference: if waves add together (superposition) so that a new wavefront is created
- Tubes with Cu-target, produce strongest characteristic radiation (K 1) at λ 1.5Å, are commonly used in geology


• Each crystalline material has a characteristic atomic structure, so it will diffract X-rays in a unique pattern

 Bragg's law: relationship between λ of incident X-rays, angle of incidence, & spacing between the crystal planes

 $n\lambda = 2dsin\theta$ n: order of reflection, λ : wavelength of the incident X-rays, d: interplanar spacing of the crystal, & θ : angle of incidence

• Components of powder X-ray diffractometer: X-ray source, sample holder, & detector



CHAPTER FOUR MINERALS FOR CHEMICAL INDUSTRY & AGRICULTURE

Shaas N Hamdan

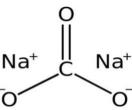
PHOSPHATE ROCK

- **Phosphate** row material for fertilizer industry, extracted from phosphate (predominantly marine biochemical rock & formed by fossils of animal bone & bird dropping)
 - Are economically viable if contain >20%P₂O₅
- The dominant phosphate mineral is Apatite
 - Apatite Ca₅(PO₄)₃(OH, F) is common in Igneous rock
 - C-fluorapatite (francolite) Ca₅(PO₄, CO₃, OH)₃(OH,F) is common in sedimentary rock (42%wt P₂O₅)
- Impurities: silicates & carbonates
- Carbonates must be reduced from phosphates to give 27-40%P₂O₅ & dissolved in sulphuric acid to produce superphosphate (with 32%Ca) the result is that insoluble apatite is converted to acid Ca-phosphate that able to enter soil solutions to uptake by plants
 - Further treatment with sulphuric & phosphoric acid yield a highly concentrated soluble superphosphate CaH₂(PO₄)₂H₂O with 56%P₂O₅
- Beneficiation: involving crushing, sizing, & flotation & used to remove carbonate impurities from phosphate rocks in order to increase concentration of P₂O₅
- Formation of phosphate minerals relates to biological productivity of the oceans, formed as concretionary horizons in response to the upwelling of phosphate-rich cold water from the deep ocean (Namebia & Morocco)
- Conditions required in the formation of phosphate:
 - 1. The upwelling current must enter a shallow water
 - 2. High organic productivity & Little terrigeneous input
 - 3. Warm & Arid climate: 40° latitude from the Equator
 - 4. Anoxic bottom in apatite precipitating as a nodular diagenetic cement within the sediment

 Phosphate minerals may be rich in fluorine up to 6%, which effect groundwater quality near mining operation as in Gaza Strip (10mg/L). 1mg/L is beneficial to health, while >3mg/L are hazardous

PHOSPHATES IN JORDAN

(عابد، 2000، جيولوجيا الاردن وبيئته ومياهه)


Age: Upper Cretaceous – Cenozoic (Tertiary) Groups, Formations, Units, Associations

Ajlone Group مجموعة عجلون

Ajlone Gro مجموعة عجلون	up
هي وحدة الحجر الجيري الاكونويدي تتكون من جبس عقيدي، رقائقي، جيد التطبق مع الدولومايت وطين اخضر واحمر ومارل اصفر والحجر الجيري فوسفات صويلح: يتواجد في حزام ضيق وهو فوسفات طري ولم يتم تحليله لمعرفة كميته	تكوين شعيب توروني كريتاسي
Belqa Groı مجموعة البلقاء	up
يمتد من شمال غرب الاردن وحتى مادبا ومن مادبا الى وادي الحسا، يحتوي فوسفات وطباشير كتلي، وكوكينا واويستر المتعاقب مع الطباشير يضم فوسفات الصحراء الجنوبية الشرقية: يتعاقب مع الصوان ويقع تحت عمان الصواني نسبة P ₂ O ₅ فيه: (24.9)	تكوين الغدران كمباني كريتاسي
قسم لجزئين و هما جزء سفلي كثير الصوان و علوي كثير الفوسفيت	تکوین عمان کمبانی کریتاسی
كثير الفوسفيت وهو التكوين الحامل لصخور الفوسفات القيمة ويشمل صخور الفوسفات من تكوين عمان، المتعاقب مع المارل، طباشير، صخر زيني الرصيفة: من تركيب عمان الحلابات، مكون من الفوسفات الحبيبي، الحجر الجيري والحجر الجيري تل السور: من تركيب عمان الحلابات، يكثر به الصوان العدسي وشعاب الاويستر الجيرة: تعاقب فوسفات وشعاب الاويستر كالموجود بالحسا والابيض ولم يتم دراستها حتى اليوم الحسا، القطرانة، جرف الدراويش، والابيض: فوسفات عدسي متعاقبة مع الاوستر والصوان والكوكينا والحجر الجيري والمارل والدولومايت فوسفات عدامي منعاقب مع الاوستر ويشبه خامات الحسا والابيص ولم يتم دراستها متعاقبة مع الصوان في اسفلها، 194%. ومتعاقبة مع الصوان في اسفلها، 194%. والجورة: طبقة فوسفات طري خالص سمكه متعاقب مع الاويستر والكوكينا والجفر، متعاقب مع الاويستر والكرين والتربة متعاقب مع الاويستر والكوكينا والمارل والتربة ويوجد في 4 مستويات عامودية (25-27% فوسفات)	تكوين الحسا او وحدة الفوسفوريت ماسترختي كريتاسي
صخوره طرية ومكونة من المارل والطباشير وجزؤه السفلي اسود من الصخر الزيتي، ويزداد الفوسفات به بالجزء السفلي القريب من الحسا يتكون من الصوان الطبقي والطباشير والحجر	تكوين الموقر ماسترختي-باليوسن
يتكون من الصوان الطبقي والطباشير والحجر والفوسفات ويتميز عن تكوين عمان برقة طبقات الصوان المتعاقبة مع الصخور الكربونية	تكوين الرجام باليوسين-ايوسين

SODIUM CARBONATES

 Sodium-carbonate (Na₂CO₃) Washing soda; Soda ash; or soda crystal & is Na-salt of carbonic acid characterize by white color, alkaline taste, very soluble in water (generates alkaline solution), &

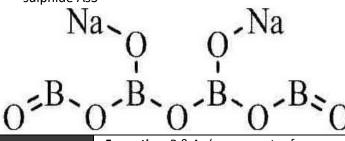
(generates alkaline solution), & have odourless powder that is hygroscopic (absorbs moisture from the air)

Produced by evaporitic deposits or alkaline brines or lakes in solvay plants near salt & limestone deposits

	Discovery in N-America of Na-carbonate		
Locality	The largest deposits in Wyoming Green River		
	Formation, African Rift Valley (Lake Magadi)		
	Well known compound for water softener		
Uses	Food additive (E500), & Acidity regulator		
	Anti-caking agent, Raising agent, & Stabilizer		

 Solvay (Ammonia soda) process: is the major industrial process in production of Na-carbonate that requires limestone & halite as raw materials, in which limestone & salt released, Na-carbonate & Ca-chloride formed, water & ammonia recycled

• Used in glass & laundry deteragent manufacturing *Began with halite reaction*


 $\begin{array}{l} \mathsf{NaCl}_{(s)} + \mathsf{H}_2\mathsf{O}_{(1)} + \mathsf{NH}_{3(aq)} + \mathsf{CO}_{2(g)} \rightarrow \mathsf{NH}_4\mathsf{Cl}_{(s)} + \mathsf{NaHCO}_{3(s)} \\ \hline \underline{\textit{Remove NaHCO}_3 \ \textit{precipitate by filtration, heat NaHCO}_3} \\ \hline 2\mathsf{NaHCO}_{3(s)} \rightarrow \mathsf{NaHCO}_{3(s)} + \mathsf{H}_2\mathsf{O}_{(1)} + \mathsf{CO}_{2(g)} \end{array}$

<u>Prepare hydrated lime from Calcine Limestone</u> CaCO_{3(s)} \rightarrow CaO_(aq)+CO_{2(g)}, CaO_(aq)+2H₂O_(l) \rightarrow Ca(OH)_{2(aq)}+2H⁺_(aq)

Regenerate ammonia

 $2NH_4Cl_{(s)} + Ca(OH)_2 \rightarrow 2NH_3^+_{(aq)} + CaCl_{2(s)} + 2H_2O_{(l)}$ BORATES

 Borates minerals (e.g. borax Na₂B₄O₅(OH)₄8H₂O): is the evaporates with limited number of boron composition & different water content, associated with arsenicsulphide AsS

	Formation: B & As (components of gaseous		
Formation	volcanic emissions) affects evaporitic water bodies with which they interact & leds to the		
	formation of Na-borates & Ca- borates		
	Controlled by <i>degree of weathering,</i>		
Environment	diagenesis, & amount of water available		
Environment	So susceptible to dehydration & rehydration		
	during burial & structural deformation		
Procedures, &	Turkey: Ca-borate interbedded with volcanic		
Locality	USA : Na-borate		
	Raw material for <i>glass industry</i> (Pyrex)		
Uses	Cleaning agents, in soaps as a surfactant		
0365	Fire retardants, agriculture & metallurgy		
	Used in preparation of Egyptian mummies		
<u> </u>	1. J. J. J.		

EVAPORATES

- **Evaporitic rocks:** occurs in sequences with gypsum & anhydrite, very important because of their mineralogy, physical properties, & behavior within the subsurface
- **Used:** used in production of fertilizers & explosives, & in produced of salt cake (Na-sulphate) by reaction with sulphuric acids in addition to more uses

Mineral class	Mineral name	Composition	
	Halite	NaCl	
Chlorides	Sylvite	КС	I
Chiondes	Carnallite	KMgCl₃.6H₂O	
	Kainite	KMg(SO₄)	CI. 3H₂O
	Anhydrite	CaSo	D ₄
	Gypsum	CaSO ₄ .	2H₂O
Sulfates	Kieserite	MgSO₄	.H₂O
	Langbeinite	K ₂ Mg ₂ (SO ₄) ₃	
	Polyhalite	K₂Ca₂Mg(S	O₄) ₆ H₂O
	Evaporitic Se	equence	
1km water eva	aporate generate	e 17m evaporite	s minerals
1Km Water	Mineral	Vol% of total	Mass of
Evaporation	Precipitation	evaporates	17m
50% (500m)	Calcite	0.6%	0.102m
85% (850m)	Gypsum	3.6%	0.612m
90% (900m)	Halite	78.2%	13.29m
95% (950m)	95% (950m) K- & Mg-salt		2.992m

• Mining Processes for Evaporates:

- 1. **Solution Mining**: Potash, Salt, & Sulfur ores are soluble in water & we remove ores from solution by pumping compressed air to trapped in air bubbles & rise to surface or by water evaporation process
- Solar Evaporation: by evaporation of sea water (30% of world salt produced in this way)

Occurrence: occurs in sequences (100m) interbedded with clays or other sediments or as salt domes Halite are ideal for trapping petroleum deposits, & play important role in the subsurface stability Uses:

- 1. Raw material in **chemical industry** (e.g. solvay process & production of NaOH or chlorine by electrolysis)
- 2. Used on roads in winter to prevent icing
- 3. Essential for life (2-5g/day) & chemical fertilizers Mining processes:
- 1. Solution mining: yielding solution with 99.5%NaCl
- 2. **Underground mining**: carried as controlled producing from salt beds deep to prevent surface subsidence

3. **Solar evaporation**: in salt pans by evaporitic seawater Structural dome formed when a thick bed of evaporite minerals found at depth forming a diapir

- Impermeable (stratigraphic trap) for petroleum & gas
- Used for underground storage due to their stability, physical behaviour, & ability to protect groundwater: important for disposal of nuclear waste

Occur as thin seams comparing to thickness of surrounding evaporite (3-6m, up to 10m), yield 25-35%K₂O equivalent **Mining**: require separation of ore minerals from evaporite, by means of flotation, electrostatic or solution methods **Potash fertilizers**: dominant end use of K-minerals, express in K as equivalent to K₂O

Halite

Salt Dome

K-Salt

SULPHUR

- **Sulphur**: occur as solid, liquid, or gas in the form of different compound (e.g. native element, sulfates, sulfides, or petrolum liquid or gas) & transported above melting point (113°C) in thermally insulated tankers
- Sulfur are recovered as SO₂ that produced by oxidation roasting & used to production of sulfuric acid that is used in manufacturing of phosphate fertilizers

• Types of sulfur:

1. **Bright sulphur**: contains ≤ 0.08% Ca

T	Bight supride. Contains \$ 0.08% Ca			
2	2. Dark sulphur: <0.25%Ca, <0.25ppmAs, <2ppmSe			
	Anhydrite is an important historical source			
	Volcanic activity: not major source. Only in Japan / Chile			
S	Oil: refining of oil sweetened by remove of sulfur by			
rce	hydrogenation process that produce hydrogen-sulfide			
Sources	(sour gas) in concentration more than methane & both			
•,	could be sources of sulfur (by <i>claus process</i>)			
	Microbes: use sulfur as H-acceptor so producing H ₂ S			
that oxidized to forms native sulfur				
g	a well with 4 concentric pipes drilled into sulfur-deposits			
Mining	& the sulfur melt by hot water at 113°C & mobilized by			
2	compressed air pressur into the surface			
<u>.</u> 9	Mosul/Iraq or Poland (Miocene evaporates)			
Locatio n	Portugal & Spain (Iberian Belt): A major source of pyrite,			
Lc	submarine volcanic origin			
	1. Used in the form of sulphuric acid			
6	2. Essential of petroleum process & many chemical			
ŝ				

industrial processes (catalyst, acid leaching)

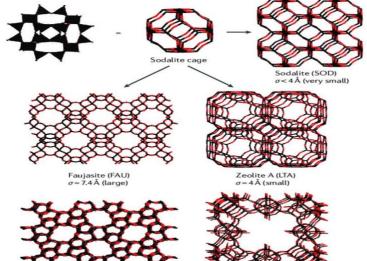
 Combustion of S bearing fuels (in coal) & releases SO₂ into the atmosphere that leds to acid rain

- Native Sulfur (<40% of world S-production): derived by microbiological activity that affect gypsum & anhydrite
- Pyrite (30% of world S-production): the most important metallic S-ore, accompanied by other metals so sulfur is by-products of metal mining & smelting operations

ZEOLITES

- Zeolite: framework aluminosilicates or rings of (Al,Si)O₄
 & is a microporous solids (members of molecular sieves)
- Molecular sieves: ability to selectively sort molecules based on the size due to very regular pore structure
- Structure: Al-O form -ve centers so +ve cations (e.g. Na, K, Ca, Mg) inter pores (cavities or channels) & move via channels to permitting ion exchange or dehydration
- **Channels (pores):** have sizes called *molecular sieves* & controls the adsorption & size of molecules in pores
 - Size of species < Min. dimension of widest channels
 - The more the T-layers, the longer the dimension
- Mining Processes:
 - 1. Open Pit Mining: by remove overburden materials
 - 2. Ore blasted or stripped using tractor which ore crushed, dried, & milled (milled ore is air-classified)

erusned, dried, & rinied (rinied ore is dir elussified)			
Occurrence	Occur naturally or produced industrially: 206		
	zeolite are identified (45 naturally occurring)		
	As volcanic ash react with alkaline groundwate,		
	or crystallize in post-depositional environments		
	over Ka-Ma in shallow marine basins		
Impurities	Contaminated by mineral (metal, Qz, or zeolites)		
	so excluded from many commercial applications		


- World's production is 3M tonne, in China, S-Korea, Japan, Jordan, Turkey, Slovakia, & USA (Respectively)
- Enclosed ions effects are related to orientation within pores (channels or cavities) or differences in strength of adsorption

(chamicis of cavilies) of amerences in strength of ausorption			
Types of ions within pore spaces (channels) & their effects			
+ve ions loosely held \rightarrow easily exchanged in a solution			
Soft cation Led to water softeners (pick up hard cation such			
(Na) as Mg, & Ca & leaving water)			
Proton Leds to strong solid acid (used as catalysts)			
Metal	Metal Form catalysts (shape-selective catalyst)		

- Uses: Available of zeolite at low cost & shortage of compete minerals are essential for large-uses
 - 1. Prying agents, & Laundry Detergents
 - $\mbox{2.} \quad \mbox{Shape-selective catalysis, $\&$ in Petrochemical industry }$
 - 3. Production process, & Biogas Industry (energy storage)
 - 4. **Ion-exchanger**: domestic & water purification processes
 - 5. **Molecular sieves:** in separation, & considered as traps
 - 6. **Construction**: in asphalt, concrete, or cement industry
 - 7. Gemstone, & Fluidized bed cat-cracking refinery process

Natural zeolites is subdivided into 6 groups							
G	R	С	Structures & Common Minerals				
			Fibrous v	with ch	ain-like structur of T ₂ O ₁₀		
GA 1	1	•	Natrolite	NAT	Natrolite, Gonnardite, Scolecite		
	1	0	Edingtonite	EDI	Edingtonite & Kalborsite		
			Thomsonite	THO	Thomsonite-series		
			Single-chair	n of 4-ri	ings that share 2 opposite T		
GB	4	1	Analcime	ANA	Leucite, Pollucite, Wairakite		
GD	4	-	Other	Monte	somaite (MON), Laumonite(LAU),		
			Other	Yugaw	aralite (YUG), Goosecrekite(GOO)		
			Doubly-con	nected	chains of 4-membere rings		
			Phillipsite	PHI	Phillipsite & Harmotome		
GC	4	2	Gismondine	GIS	Amicite, Garronite, Gobbinsite		
			Other	Bogsite	e (BOG), Merlnoite (MER), Mazite		
			Other	(MAZ),	Paulingite(PAU), Perlalite(lindeL)		
			Tabular with chain of 6-rings, open columnar				
		5 M			Chabazite	СНА	Herschelite, Willhendersonite,
			Chabazite	СНА	SSZ-13		
				Faujasite	FAU	Faujasite-series, Linde X, Linde	
GD	6		Tadjasite	170	Y		
					Mordenite	MOR	Maricopaite, Mordenite
			Bellbergite	BEL	TMA-E, Aiello, Barrer; type EAB		
			Other		tite, Wenkite, Bikitaite, Erionite,		
			Ferrieri	ite, Gmelinite, Levyne, Rpistilbite			
	3-		Chains of T	10 0 20 V	vith 3 & 5 membered rings		
GE		M	Heulandite	HEU	Clinoptilolite, Heulandite		
	5		Stilbite	STI	Barrerite, Stellerite, Stilbite		
Ot	N4-	м	Cowlesite, Pen	tasil (ZSI	M-5, MFI), Linde A (zeolite A, LTA),		
her	м		Tschernichite (β-polymorph A, disordered, BEA)				
G = Group R = Number of Rings C = Number of Chains M = Multi							

G = Group | R = Number of Rings | C = Number of Chains | M = Multi

Industrial Earth's Resources

75M-5

Shaan N Hamdan

te (CLO)

Clo