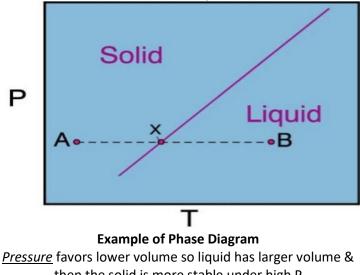
# INDUSTRIAL EARTH RESOURCES SHAAS N HAMDAN



FINAL


## CHAPTER FIVE

# FIRED PRODUCTS: THE NEED FOR HIGH TEMPERATURE PROCESSING

F

Φ

- Industrial product is derived by heating of raw materials alone or in appropriate proportions that transformed into a new material which has the physical & chemical properties required by the manufacturers
- Two types of processes are involved:
  - 1. Heating to produce chemical change: forms very reactive materials such as plaster or cement
  - 2. Heating to produce chemical & physical change: forms unreactive material under the conditions of use (e.g. refractory bricks, glass, & building bricks)
- Firing process & energy intensive process covering T from 150°C(plaster manufacture) to 1600°C(glass man.)
  - The firing process should be understood as fully as possible, so that the effect can be predicted
  - High T processing is carried out at atmospheric pressure, but a number of materials are produces at elevated pressures, under autoclave conditions
- The behavior of minerals at high T-P has been of interest to geologists, but a quantitative understanding of mineral phase relationships, under experimental or geological conditions (by Bowen's & Gibbs etc...)
- Phase diagram: is the standards way of presenting the relationship between different phases, & is a graphical illustration of stability ranges of minerals & melts as a function of P, T, & X (bulk composition)



then the solid is more stable under high P Temperature favors randomness (entropy) so liquid has higher entropy & more stable under higher T The slope of solid-liquid equilibrium is +ve so increased pressure raises the melting point

#### Phase diagrams follows the phase rule $\mathbf{F} = \mathbf{C} - \mathbf{\Phi} + \mathbf{X}$

Number of degrees of freedom (F), Number of Phase ( $\Phi$ ), Number of Components (C), & Number of Variables (X)

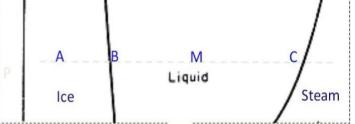
Degrees of freedom: minimum number of intensive parameters or variables that specified in order to completely determine the state of a system at equ.

Number of variable that must be specified or that we are free to change independently

Phase: is a mechanically separable constituents

- Some minerals consists > 1P: e.g. ice is 1P but ice water is 2P that are separable, & 2 pieces of ice are seperable but equivalent so is 1P
- **Polymorphs**: minerals with >1P but have same • compositions (sanidine, microcline, orthoclase)

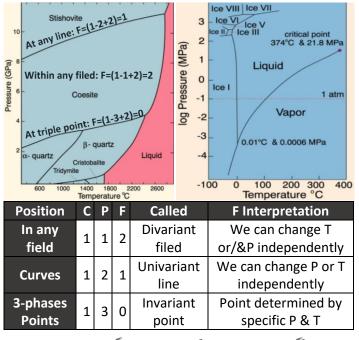
**Components:** is the minimum number of chemical constituents that must be specified in order to define the system & all of its phases


|   | С                                             | System                                  | Example                                  |  |  |  |  |  |  |
|---|-----------------------------------------------|-----------------------------------------|------------------------------------------|--|--|--|--|--|--|
| С | 1                                             | Unary                                   | Ice water with 2P but the                |  |  |  |  |  |  |
|   | 2                                             | Binary                                  | components is just 1C (H <sub>2</sub> O) |  |  |  |  |  |  |
|   | 3                                             | Ternary                                 | but can be 2C if define it as H &        |  |  |  |  |  |  |
|   | 4                                             | Quaternary                              | O ions                                   |  |  |  |  |  |  |
|   | Number of intensive variables (include P & T) |                                         |                                          |  |  |  |  |  |  |
|   | С                                             | Variables                               |                                          |  |  |  |  |  |  |
| Х | 1                                             | Changing Temperature <u>OR</u> Pressure |                                          |  |  |  |  |  |  |
|   | 2                                             | Changing                                | g Temperature AND Pressure               |  |  |  |  |  |  |

**EXAMPLE**: If we heat ICE on hot plate Before heating (T< 0°C)

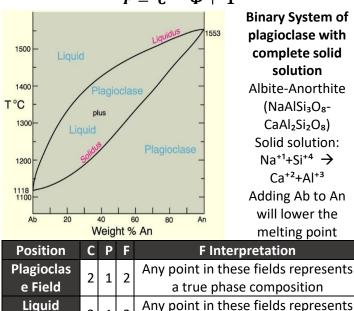
P = 1 (ice), C = 1 ( $H_2O$ ),  $X = 2 \rightarrow F = 2$ Heating Ice on hot plate at constant pressure P = 2 (ice, water), C = 1 ( $H_2O$ ),  $X = 2 \rightarrow F = 1$ 

T-P relationship is expressed as the slope of the






In (A) 2 variable are independent (changes P or/& T, we still have one phase), at (B) & (C) 2 phases coexist so P & T aren't independent (if you change P you should change T)


## ONE COMPONENT SYSTEM

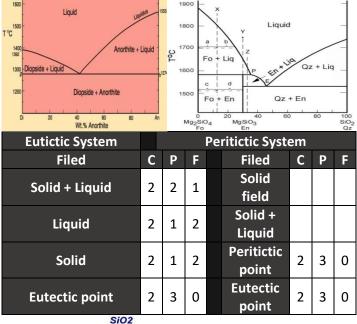
Experiment on silicate system (need high P furnace capable of melting rocks at high P) lead to discover of number of solid silica polymorphs & liquid phase

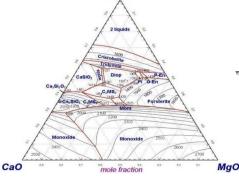


## 2C SYSTEM (BINARY)

If the P is constant (0.1Mbar), the phase rule become  $F = C - \Phi + 1$ 




| Liquia      | 2 | 1        | 2 | Any point in these helds represents |
|-------------|---|----------|---|-------------------------------------|
| Filed       | 2 | <b>–</b> | 2 | a true phase composition            |
| Pl + Liquid | ſ | ſ        | 1 | Represents bulk composition with    |
| Filed       | 2 | 2        | 1 | 2P & connected by horizontal line   |
| At curves   | 2 | 2        | 1 | We can changes P or T               |
| 3-filed     | 2 | 3        | 0 | We cannot changes P or T            |


To determine proportions

 $X(An)_{Liq} = \frac{n_{An}}{n_{An} + n_{Ab}}$  (if n in grams) To determine amount of materials using liver rule Distance from solidus to point Liquid% = Solidus to Liquidus Distance Distance from liquidus to point Solid% = **Solidus to Liquidus Distgnce** 

- There are 2 types of reactions:
  - 1. Equilibrium melting & crystallization: if the inetial composition is same as the final composition
  - 2. Fractional crystallization: Remove crystals as forms so can't undergo a continuous reaction with melt
  - 3. Partial Melting: by remove first melt as forms
- Eutectic point: represent the temperature limit below • which no liquid can occur for intermediate composition





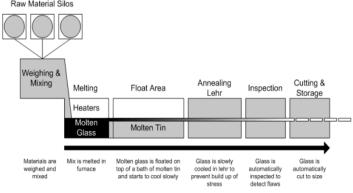


# TERNARY SYSTEM

**Phase Diagram Applications** 

- LOI: water & organic matter that can be lost when ignited at 1000°C. Lost when clay field so neglected
- 2. Col 2 recalculated remaining analyticlal data
- Predict how clay behave on firing 3.
- Loss of volatile when material is ignited (e.g. loss of 4 CO2 from carbonate rocks & minerals)
- 5. To mark the position of dolomite

## TIME-TEMPERATURE-


## TRANSFORMATION DIAGRAM

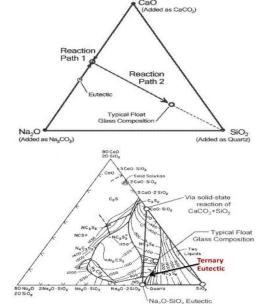
- To understand the way in which reactions approach equilibrium, the effect of time has to be considered.
- TTT diagrams: compiled by experimentally firing raw materials of interest at a variable T over time, quenching & identifying the mineral products.
- Minimum amount of time or the minimum temperature required to produce a given mineral product can be determined to fire the material.

# CHAPTER SIX THE INDUSTRY OF GLASS

## RAW MATERIAL FOR GLASS

| <ul> <li>Top producers of glass: USA &amp; Japan</li> </ul> |                                                                          |  |  |  |  |
|-------------------------------------------------------------|--------------------------------------------------------------------------|--|--|--|--|
|                                                             | Types of glass                                                           |  |  |  |  |
| Soda-                                                       | most quantity is of this type, used mainly for                           |  |  |  |  |
| Lime-                                                       | containers (bottles, jars) & windows                                     |  |  |  |  |
| silica-                                                     | • Glass of particular specifications: as Heat-                           |  |  |  |  |
| Glass                                                       | resistant as pyrex (add boric oxide)                                     |  |  |  |  |
| Non-                                                        | Important for special ptical purposes                                    |  |  |  |  |
| silicate                                                    | • Example: infrared optics (from CaF <sub>2</sub> , AlF <sub>3</sub> , & |  |  |  |  |
| Glass                                                       | $P_2O_5$ ), using of flouride glass in optical fibres                    |  |  |  |  |
| Composition of soda lime silica glass                       |                                                                          |  |  |  |  |
|                                                             | Contine Soda Ash, limestone, silica sand                                 |  |  |  |  |
|                                                             | Al: help improve resistance to weathering                                |  |  |  |  |
| Major                                                       | Mg: can substitute Ca partially as in dolomite                           |  |  |  |  |
| Iviajoi                                                     | K: substitute for Na as in feldspar                                      |  |  |  |  |
|                                                             | Opaque glass: forms by adding fluorides                                  |  |  |  |  |
|                                                             | No CO <sub>2</sub> : it is lost during decomposition                     |  |  |  |  |
|                                                             | As small impurities may have a major +ve or -                            |  |  |  |  |
|                                                             | ve effect on the quality of the glass                                    |  |  |  |  |
|                                                             | Fe: give green color (used in container glass)                           |  |  |  |  |
| Minor                                                       | Li: reduce T required to melt (energy saving)                            |  |  |  |  |
|                                                             | Colouring agents (Fe, Ni, & Co): produce                                 |  |  |  |  |
|                                                             | colored glass (Ni:brown, Co:blue) depends on                             |  |  |  |  |
|                                                             | bulk composition & amount of traces                                      |  |  |  |  |
|                                                             | Solid inclusios: may introduced the color                                |  |  |  |  |
| Raw Material                                                | Silos                                                                    |  |  |  |  |




### **GLASS MANUFACTURING**

- Soda-Lime-silica-glass manufacture involves melting the required raw material mixture at 1600°C, that leds to escaping of gases from the fluid melt
- Float glass (Pilkington Process): is a sheet of glass made by floating molten glass on a molten metal (tin) under reducing condition, & this method gives the sheet uniform thickness & very flat surfaces
- Flat glass products:
  - 1. Soda-lime glass, borosilicate, flat panel display glass
  - 2. Containers & other shaped products are made by blowing or pressing into moulds at working stage

## Shaas N Hamdan

### CHEMISTRY & SOURCES

• The chemistry: referred to quenched silicate liquid. & represented by phase diagram of SiO<sub>2</sub>-CaO-Na<sub>2</sub>O



- Sources of soda & lime are Na-carbonate & limestone
- In formulation of batches consisting of silica sand, limestone & soda ash, proportions must be corrected to take into account loss of CO<sub>2</sub>
- To carry out correction, atomic mass used to determine proportions of CaO within CaCO<sub>3</sub> & Na<sub>2</sub>O in Na<sub>2</sub>CO<sub>3</sub>
  - 100 tons of limestone = 56Ton CaO + 44Ton CO<sub>2</sub>
  - 100 tons of soda Ash = 58Ton soda + 42Ton CO<sub>2</sub>
- As Na<sub>2</sub>O & CaO don't occur naturally, the correspondent carbonates used (CO<sub>2</sub> removed & silica sand SiO<sub>2</sub> used)
- Glass compositions are variable & could be achieved by blending raw material in different possible combination, impurities can be tolerated
- Silica sand suitable for glass is relatively rare, because of the need for high degree of chemical purity.
- The "holy grail" for silica sand producers is sand that achieve 99.99%SiO<sub>2</sub> after beneficiation
- Essential requirement:
  - 1. Grain size: >90% should be between 125-  $500\mu m$
  - 2. Chemical composition: must meet requirement
- Discouloring Fe & Cr occur within other phases in sand
  - Fe: occur as red-hematite-sand, or yellow or brown oxyhydroxide, as well as in silicate minerals
  - Cr: as chromite (heavy mineral) derived from mafic or ultramafic rocks, stable in glass manufacturing, persists as solid inclusions within finished product, which can cause it to be brittle
  - AI: from feldspars, mica or clay minerals (Beneficial)

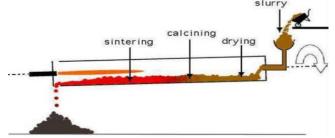
# CHAPTER SEVEN

# CEMENT & PLASTER

• The essential characteristic of cement & plaster is that they are calcined materials Which harden on reaction with water when mixed as paste

#### Types of cement

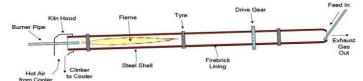
#### Most widely used cement, limestones (cement stones)


- Patented in England by Joseph Aspdin
- Calcining impure (argillaceous)
- Composed of:
- 3 dominant components: lime (CaO), silica (SiO<sub>2</sub>), alumina (Al<sub>2</sub>O<sub>3</sub>), dominant raw materials are limestone or chalk & shale (Silica & Alumina dominant in shale), & this components are reacted together by clacining at about 1500°C.
  - **2.** Additional component (such as iron) are important for clinker compounds

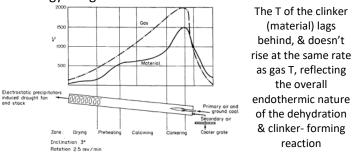
Pozzolanic Portland is stronger than Pozzolanic cement

- Manufacturing of cement as Clinker (ground to give a powder as finished products) & process involved in its hydration are of major importance
- Plaster: a building material used for coating walls & ceilings, manufactured as a dry powder & mixed with water to form a paste when used
  - Lime-based (during Roman time)
  - Modern Gypsum-based Plaster of Paris
- Clinker: refers to lumps or nodules, usually 3-25mm in diameter, produced by sintering (fused together without melting to the point of liquification) limestone & alumino-silicate materials such as clay in kiln cement




- Calcining is carried out in long, inclined, rotating kilns, through which the raw material gradually move, with T rising steadily & then cooling rapidly
- A number of reaction took place in a sequence
- Rate of flow needs to be controlled. & Raw material could be introduced as dry powder or wet as a slurry




- Stages of a process of manufacture of cement clinker:
- 1. **Grinding** a mixture of limestone & clay or shale to make a fine "rawmix"
- 2. **Heating** the rawmix to sintering temperature (up to 1450°C) in a cement kiln
- 3. Grinding the resulting clinker to make cement
- In 2nd stage, the rawmix is fed into the kiln & gradually heated by contact with the hot gases from combustion of the kiln fuel. Successive chemical reactions take place as the temperature of the rawmix rises

| 70-110°C  | Free water is evaporated                                                                                                              |  |  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 400-600°C | <b>Clay-like minerals</b> are decomposed into their constituent oxides; principally SiO <sub>2</sub> & Al <sub>2</sub> O <sub>3</sub> |  |  |
| 400-000 C | <b>Dolomite</b> (CaMg(CO <sub>3</sub> ) <sub>2</sub> ) decomposes to calcium carbonate, MgO & CO <sub>2</sub>                         |  |  |
| 650-900°C | <b>CaCO</b> <sub>3</sub> react with SiO <sub>2</sub> to form belite Ca <sub>2</sub> SiO <sub>4</sub>                                  |  |  |
| 900-1050  | The remaining calcium carbonate decomposes to                                                                                         |  |  |
| °C        | calcium oxide & CO <sub>2</sub>                                                                                                       |  |  |
| 1300 -    | Partial (20–30%) melting takes place, & belite                                                                                        |  |  |
| 1450°C    | reacts with calcium oxide to form alite (Ca <sub>3</sub> O·SiO <sub>4</sub> )                                                         |  |  |

- Alite: characteristic constituent of Portland cement, a peak T of 1400–1450°C is required to complete reaction
- Partial melting causes the material to aggregate into lumps or nodules of diameter 1–10mm. This is **clinker**
- The hot clinker next falls into a cooler which recovers most of its heat, & cools the clinker to around 100 °C, at which T it can be conveyed to storage. The cement kiln system is designed to accomplish these processes .



 Fuel combustion (coal) is used to provide heat required, & ash incorporated chemically in the clinker. Organic matter in clays contributes to combustion, assisting the energy budget



Industrial Earth's Resources

Shaan N Hamdan

- CaO is highly reactive material, & once formed it reacts with dehydrated clay to give one or more of the a calcium aluminum silicates.
- These form the content of clinker material, which are occasionally found in nature in contact metamorphism of impure limestone.
- A number of minerals are characteristic of freshly made cement clinkers, including alite & belite
- compound composition of p.c. (or clinker): Oxides interact with eachother in the kiln to form more complex products (compounds)

| Name                      | Formula                                                             | Symbol |
|---------------------------|---------------------------------------------------------------------|--------|
| Tri Ca- Silicate          | 3CaO.SiO <sub>2</sub>                                               | C3S    |
| Di Ca-Silicate            | 2CaO.SiO <sub>2</sub>                                               | C2S    |
| Tri Ca-Aluminate          | 3CaO.Al <sub>2</sub> O <sub>3</sub>                                 | C3A    |
| Tetra Ca-Alumino, Ferrite | 3CaO.Al <sub>2</sub> O <sub>3</sub> .Fe <sub>2</sub> O <sub>3</sub> | C4AF   |

• Portlandite Ca(OH)2 or CH, occurs in hydrated cement

• is catalyzed by the presence of C4AF, & produces tricalcium silicate, which is responsible for the strength of concrete & is therefore an essential component

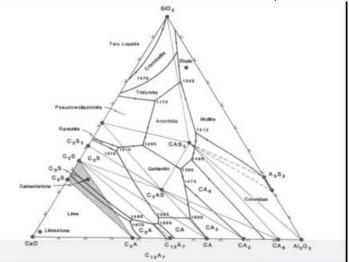



Figure 7.2 Phase relationships at one atmosphere pressure in the carbon dioxideand water-free system C-A-S, showing plotting positions of limestone, cementstone and shale, and highlighting the C<sub>2</sub>S-C<sub>3</sub>S-C<sub>3</sub>A triangle. Compositions in this diagram are expressed as weight %.

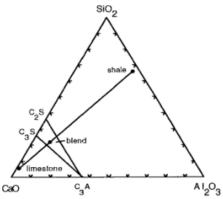



Figure 7.3 Estimation of proportions of limestone and shale required to make cement. In this example, a blend of 66% lime and 34% shale will give the required composition. If we assume that the shale volatile content is 10% and that the limestone is pure calcium carbonate (i.e. 56% CaO; 44% CO<sub>2</sub>), the proportions of limestone and shale are corrected to 76% and 24% respectively. However, this does not compensate for the shale's lime content (see text).

 Once it leaves the kiln, the cement clinker is ground & mixed with 4-7% gypsum, which helps inhibit setting while the cement is being worked. This mixture does not set for a number of hours.  National quality standards may allow the grinding of proportions of other materials with the cement & gypsum if they show hydraulic or pozzolanic properties, or otherwise usefully contribute to concrete properties.

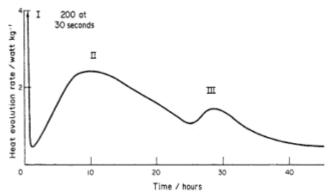




Figure 7.4 Variation in rate of heat evolution as Portland cement sets (from Bye, 1983).

- Setting of Portland Cement (SO<sub>3</sub>→comes largely from gypsum). P.C. alone sets quickly so some gypsum is ground with clinker to retard the setting time
- Hydration: Chemical reactions with water.
- As water comes into contact with cement particles, hydration reactions immediately starts at the surface of the particles. Although simple hydrates such as C-H are formed, process of hydration is a complex one & results in reorganization of the constituents of original compounds to form new hydrated compounds



A) Immediately after mixing

B) Reaction around particles - early stiffening

C) Formation of skeletal structure - Tirst hardening

D) Gel infilling - later hardening

- At any stage of hydration the hardened cement paste (hcp) consists of:
  - 1. Hydrates of various compounds referred to collectively as GEL
  - 2. Crystals of calcium hydroxide (CH).
  - 3. Some minor compound hydrates.
  - 4. Unhydrated cement
  - 5. The residual of water filled spaces pores.
- Factors affecting setting time: temperature & humidity, water amount, chemical composition of cement, fineness of cement (finer cement, faster setting)
- Abnormal Settings: Flash-set, False-set
- Special cements are produced for particular requirements: Quick setting cement, High alumina cement, Sulphate resistant cement, Low alkali cement

|                                                       | SPECIAL CEMENTS                                                                                                                                                                               |  |  |  |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                       | set within 30-60 minutes, achieves its full strength only                                                                                                                                     |  |  |  |
| uick<br>ting                                          | after 28 days. Achieved by addition of Bauxite & flourite                                                                                                                                     |  |  |  |
| set Q                                                 | to raw material mixture                                                                                                                                                                       |  |  |  |
|                                                       | By grinding & blending P.C.: Clinker+Pozzolan+Gypsum                                                                                                                                          |  |  |  |
| Portland<br>Pozzolan                                  | P.P.C. Produces less heat of hydration & offers higher                                                                                                                                        |  |  |  |
| ortl<br>ozza                                          | sulfate resistance so it can be used in marine structures                                                                                                                                     |  |  |  |
| ă ă                                                   | & mass concrete.                                                                                                                                                                              |  |  |  |
|                                                       | Raw materials: limestone & bauxite (Al $_2O_3$ & Fe $_2O_3$ ) that                                                                                                                            |  |  |  |
| ina<br>AC)                                            | interground & introduced in kiln clinkered at 1700°C                                                                                                                                          |  |  |  |
| High Alumina<br>Cement (HAC)                          | Develop full strength much more rapidly                                                                                                                                                       |  |  |  |
| l Al<br>ent                                           | <ul> <li>No longer used in load bearing applications as loss</li> </ul>                                                                                                                       |  |  |  |
| High<br>Cem                                           | of volume on recrystallization increasing porosity                                                                                                                                            |  |  |  |
| - 0                                                   | • The oxide composition is quite different: $Al_2O_3 \rightarrow 40-45\%$ , CaO $\rightarrow$ 35-42%, Fe <sub>2</sub> O <sub>3</sub> $\rightarrow$ 5-15%, SiO <sub>2</sub> $\rightarrow$ 4-10 |  |  |  |
|                                                       | Used in construction where concrete will be subjected                                                                                                                                         |  |  |  |
| РС                                                    | to external sulfate attack (chemical plants, marine &                                                                                                                                         |  |  |  |
| Type V: Sulfate Resistant PC                          | harbor structures)                                                                                                                                                                            |  |  |  |
| sist                                                  | • During hydration C3A reacts with gypsum & water                                                                                                                                             |  |  |  |
| Re                                                    | to form ettringite. In hardened cement paste Ca-                                                                                                                                              |  |  |  |
| ate                                                   | alumino-hydrate can react with Ca & alumino                                                                                                                                                   |  |  |  |
| Sulf                                                  | sulfates, from external sources, to form ettringite                                                                                                                                           |  |  |  |
| š                                                     | which causes expansion & cracking.                                                                                                                                                            |  |  |  |
| /pe                                                   | <ul> <li>C-H &amp; sulfates can react &amp; form gypsum which<br/>again causes expansion &amp; cracking.</li> </ul>                                                                           |  |  |  |
| ŕ                                                     | In Type $C_3A$ , limited to below 3.5%. lowering Al-content                                                                                                                                   |  |  |  |
|                                                       | In manufacture of concrete in which the use of a                                                                                                                                              |  |  |  |
| low alkali<br>cement                                  | particular aggregate introduces alkalis, giving the                                                                                                                                           |  |  |  |
| ow alka<br>cement                                     | grounds for alkali- silica reactivity might occur                                                                                                                                             |  |  |  |
| <u>o</u> o                                            | • Max content of Na <sub>2</sub> O of 0.6% = total alkali                                                                                                                                     |  |  |  |
|                                                       | made from materials containing a little Fe-oxide & Mn-                                                                                                                                        |  |  |  |
| ~                                                     | oxide (Fe <sub>2</sub> O <sub>3</sub> +MnO $\leq$ 0.8%) to avoid contamination by                                                                                                             |  |  |  |
| ИРС                                                   | coal ash, oil is used as fuel.                                                                                                                                                                |  |  |  |
| Ś                                                     | To avoid contamination by iron during grinding, instead                                                                                                                                       |  |  |  |
| len                                                   | of steel balls nickelmolybdenum alloys are used.                                                                                                                                              |  |  |  |
| Cen                                                   | <ul> <li>Major compounds are CA &amp; C2S, it's basically<br/>different from OPC. &amp; the concrete made from this</li> </ul>                                                                |  |  |  |
| White Portland Cement                                 | cement has very different properties.                                                                                                                                                         |  |  |  |
| tlaı                                                  | <ul> <li>It has high sulfate resistance.</li> </ul>                                                                                                                                           |  |  |  |
| Por                                                   | • Very high early strength (emergency repairs)                                                                                                                                                |  |  |  |
| ite                                                   | • About 80% of ultimate strength is obtained within                                                                                                                                           |  |  |  |
| Wh                                                    | 24hrs. But the strength is adversely affected by T.                                                                                                                                           |  |  |  |
|                                                       | The setting time is not as rapid as gain of strength.                                                                                                                                         |  |  |  |
|                                                       | Initial setting time 4hrs & final setting time is 5hrs                                                                                                                                        |  |  |  |
| ]                                                     | LIME SATURATION INDEX                                                                                                                                                                         |  |  |  |
| Cal                                                   | culated from chemical analysis of raw materials &                                                                                                                                             |  |  |  |
|                                                       | easure ability of blend to react leaving no free lime.                                                                                                                                        |  |  |  |
| (i.e. solid phases are saturated with respect to CaO) |                                                                                                                                                                                               |  |  |  |
| • The Lime Saturation Factor is a ratio of CaO to the |                                                                                                                                                                                               |  |  |  |
|                                                       | ner 3 main oxides. Applied to clinker, in modern                                                                                                                                              |  |  |  |
| 0.0                                                   | ier 5 main Oxides. Abbiled to clinker. In modelfi                                                                                                                                             |  |  |  |

• The Lime Saturation Factor is a ratio of CaO to the other 3 main oxides. Applied to clinker, in modern clinkers are 0.92-0.98, or 92%-98%. TYPICALLY 96%

| $LSF = \frac{1}{2.8SiO_2 + 1.2Al_2O_3 + 0.65Fe_2O_3}$                                                                                                   |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                                                         |     |
| LSF Mean                                                                                                                                                |     |
| 1 All lime should combined with belite to form al                                                                                                       | ite |
| <ul> <li>&gt;1 Free lime is likely to be present in the clin surplus free lime has nothing with which combine &amp; will remain as free lime</li> </ul> |     |

- Impurities: Mg, F, Alkalis, & Sulphur compounds
- Plaster Mineralogy & Production
  - 1. Calcining gypsum at 150- 165 C
  - 2. CaSO4. 2H2O= CaSo4. 0.5 H2O
  - Calcined gypsum is used to produce a number of different plaster produts
- Plaster Mineralogy & Production: Calcining gypsum at 150-165C, CaSO<sub>4</sub>.2H<sub>2</sub>O=CaSO<sub>4</sub>.0.5H<sub>2</sub>O, Calcined gypsum is used to produce a number of different plaster produts

### EXAMPLE

Blends of limestone & shale with LSF of 0.96, composition of limestone is 3.0 SiO<sub>2</sub>; 0.7 Al<sub>2</sub>O<sub>3</sub>; & 0.3 Fe<sub>2</sub>O<sub>3</sub> & continue 53.7% lime, the shale composition is 50.1 SiO<sub>2</sub>; 22.9 Al<sub>2</sub>O<sub>3</sub>; & 7.9 Fe<sub>2</sub>O<sub>3</sub> & continue 2.8% lime (Mw of CaO in CaCO<sub>3</sub>). Calculate equivalent parts of lime CaO, content of limestone that available to react with shale, & Proportion of blend (amount of limestone required to satisfy one unit of shale)

#### The equivalent parts of lime CaO

 $LSF = \frac{Ca0}{2.8Si0_2 + 1.2Al_2O_3 + 0.65Fe_2O_3}$  $0.96 = \frac{Ca0}{2.8x3.0 + 1.2x0.7 + 0.65x0.3}$ Ca0 = 0.96x(2.8x3.0 + 1.2x0.7 + 0.65x0.3) = 9.06

#### Available limestone to react with shale

53.7 - 9.05 = 44.65 equivalent parts (one unit limestone can provide 44.65 ep of lime)

#### Proportion of blend (Limestone/Shale)

 $CaO_{shale} = 0.96x(2.8x50.1 + 1.18x22.9 + 0.65x7.9)$   $CaO_{shale} = 165.54 \ equivalent \ parts$ Available shale = 165.54 - 2.8 = 162.74 ep (one unit of shale requires 162.74 ep of lime)

> $P_{blend} = \frac{Limestone}{Shale} = 1:3.645$ Available Shale Available Limestone =  $\frac{162.74}{44.65} = 3.645$

 $Shale = \frac{1}{3.645} x100\% = 27.47\%$  Limestone = 100% - 27.47% = 72.53%