

Shaas Hamdan

ENVIRONMENTAL GEOCHEMISTRY

• Environmental Geochemistry: is the application of chemical principles to predicting the fate of organic & inorganic pollutants at surface & in atm **الفرق بين الجيوكيمياء والجيوكيمياء البيئية:** الجيوكيمياء تعنى بدراسة المواد المكونة للارض وتفاعلاتها وسلوكها اثناء التفاعل، اما الجيوكيمياء البيئية فتعنى بدراسة الضرر التي تسببها هذه المواد للحياة

NATURAL Vs. ANTHROPOGENIC

- Human activity have introduced new substances into the environment that didn't exist prior to the Industrial Age (e.g. CFCs, & probably PCBs)
- Contaminant: substance present in <u>greater than</u> <u>natural concentration as a result of human</u> <u>activity</u> مادة عن حدها الطبيعي في البيئة بفعل الانسان
- Pollutant (contaminants harms environment): is substance present in <u>greater than natural</u> <u>concentration by human activity that has a net</u> <u>detrimental effect on the environmen</u>t مادة يزيد تركيزها عن حدها الطبيعي وتؤثر على الطبيعة
- Toxic (Toxicant, Pollutant harms biota): present in greater than natural concentration as a result of human activity that has a net detrimental effect upon the life functions of one or more biota مادة يزيد مادة يزيد ها عن حدها ويصبح لها تأثير على المكونات الحيوية
- Natural Compounds: natural occurring, & can be classified as contaminants & pollutants
- Anthropogenic Compounds: materials affecting environment produced due to the human activities BIOGEOCHEMICAL CYCLES
- **Biogeochemical cycle:** natural pathway by which elements of living matter are circulated
- Elements: mass of the same atoms can be divided to metal & non-metal based on physical properties
 - Elements that form 99% of the crust are: O₂, Si⁴⁺, Al³⁺, Fe²⁺, Fe³⁺, Ca²⁺, Na⁺, K⁺, Mg²⁺
- **Mineral:** <u>naturally</u> occurring, <u>crystalline</u>, <u>solid</u>, <u>inorganic</u>, with characteristic <u>chemical & physical</u> <u>properties</u> that allow it for some variation

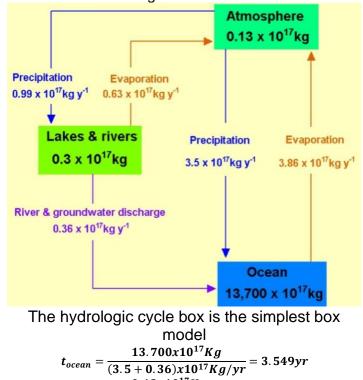

السبب لوجود عناصر ال native elements كمعدن في الطبيعة وعدم وجود عناصر مثل Fe هو خصائص ال native elements) التي تجعلها مستقرة (لا تتفاعل مع عناصر اخرى low reactivity)

- **Biosphere Elements (for life):** O_2 , C, N₂, H₂, P, S
 - Make up the building units in living organisms (Carbohydrates, Proteins, Fats, DNAs, RNAs)
- Reservoirs: contains a quantifiable amount of material with definable borders, defined by distinct chemical, physical, or biological characteristics
 - Scales are depends on the scope of problem
 - e.g. reservoir of water are Oceans, atm...etc
- Box models & steady-state assumption used to trace the passage of bio-geo-hydro-atom-spheres constituent & assess impact of anthropogenic inputs on natural cycle
- Box model: consists of several boxes show reservoirs for a substance & the rate at which material is transferred

 In steady-state system: the total amount of a substance in each reservoir remains constant (rate of addition = rate of removal of a material)

Reservoir A Flux AB Reservoir B Flux BC Reservoir C

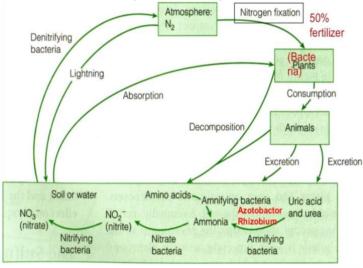
If $Flux AB = Flux BC \rightarrow B$ is in study state If $Flux AB > Flux BC \rightarrow B$ will increase If $Flux AB < Flux BC \rightarrow B$ will decrease Dynamic equilibrium scenario

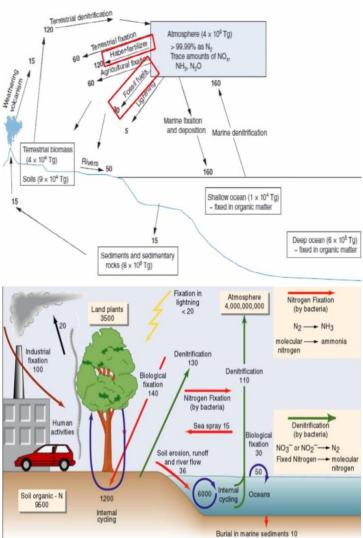

If *Flux AB* = *Flux BC* \rightarrow the system is in dynamic equiperum (amount of materials will be constant) If *Flux AB* \neq *Flux BC* \rightarrow system is not in dynamic equiperum (amount of materials will be changed)

 Residence time: is the average length of time a particular substance will reside in a reservoir

 $t_{R} = \frac{\Sigma amount of material in reservoir}{\xi_{R}}$

rate of addition or removal


t_{Ratmospheric water} is very short which suggest that change in the rate of addition of water lead to rapid increases in vapor &precipitation. This is referred to as *speeding up of hydrologic cycle due to warming*



$$t_{Atm} = \frac{0.13x10^{17}Kg}{(0.63 + 3.86)x10^{17}Kg/yr} = 0.0290yr$$

NITROGEN CYCLE

- The nitrogen cycle: is the biogeochemical cycle by which nitrogen is converted into multiple chemical forms as it circulates among atmosphere, terrestrial, & marine ecosystems
- The conversion of nitrogen can be carried out through biological & physical processes
- **Processes in the nitrogen cycle:** fixation, ammonification, nitrification, & denitrification

 Nitrogen Fixation: conversion of nitrogen gas (N₂) into nitrates (NO₃⁻) & nitrites (NO₂⁻) through atmospheric, industrial, & biological processes

			en Cycle									
				اثناء البرق (تصل درجة								
				قادرة على كُسر الروابط)								
Lightning	N≡N			$-N, N + O_2 \rightarrow NO$	2							
fixation			$P_2 + H_2O \rightarrow$									
	• Atmo			$D_3 \rightarrow H + NO_3$	orm to							
		 Atmospheric nitrogen fixed into a usable form to be taken up by plants & fixed by lightning strikes 										
				ن انواع البكتيريا بتحول								
				بي وربي . بيري . باء بعض الحيوانات يوجد								
				مخلفات هذه الحيوانات كا								
Biological				y free-living or sym								
Fixing				yme combines N v								
				which is convert								
				organic compound teria live in root no								
				or ammonium fro								
	soil by the			absorbed, it is rea								
Assimilatio				m for incorporatio								
				and chlorophyll								
				alization: When a								
		or animal dies, Bacteria or fungi convert the organic										
Ammoni-	0		ito ammoni									
fication		imilate			to tion):							
		ammonium (nitrate/nitrite ammonification): Microbes reducing nitrate into nitrite, & then										
				$NO_2^- \rightarrow NH_4^+)$								
	An وتحوله	nmonia	بريا حمض ال	حيوية: تمتص بعض البكت								
				nitrat وبكتيريا اخرى تق								
		• Urine are broken down by nitrifying bacteria in										
		the soil to be used by plants										
Nitrificatio		Nitrification: The conversion of ammonium to nitrate by soil-living & nitrifying bacteria										
					.+) is							
		 The oxidation of ammonium (NH₄⁺) is converts by bacteria into nitrites (NO₂⁻) 										
				onverts nitrites (I								
), & It is importa								
				be converted to i								
				ammonia toxic to								
	industri	al fixat		حويل النيتر وجين الي امون معاد ١	هي ت							
Heber	• Toda	w aba	$N_2 + 3H_2 -$	\rightarrow 2NH ₃ he total fixed nitro	aon is							
Fertilize				using the Haber-I								
				process, which uses high T-P to convert N ₂ & H-source (gas or petroleum) into ammonia								
		H-source (gas or petroleum) into ammonia ممكن اعتباره من industrial fixation نتيجة لحرق الوقود										
		الاحفوري ينتج اكاسيد النيتروجين وهي من غازات الدفيئة وتساعد										
Fossil Fuel	ئة وتساعد s	رات الدفي	ين و هي من غاز	ن اعتباره من fixation ري ينتج اكاسيد النيتروج	nia ممک الاحفو							
Fossil Fuel	ئة وتساعد s	رات الدفي	ين و هي من غاز	ن اعتباره من fixation ري ينتج اكاسيد النيتروج	nia ممک الاحفو							
Fossil Fuel	ئة وتساعد s البكتيريا	زات الدفير واع من	ين وهي من غاز الاوزون ة حيث تقوم ان	ن اعتباره من fixation ري ينتج اكاسيد النيتروج بانتاج العملية التي تغلق الدور	<u>nia</u> ممك ممك الاحفو							
Fossil Fuel	ئة وتساعد s البكتيريا	زات الدفير واع من	ين وهي من غاز الاوزون ة حيث تقوم اذ ن لتحويله الي	ن اعتباره من fixation ري ينتج اكاسيد النيتروج بانتاج العملية التي تغلق الدور زال مركبات النيتروجي	<u>nia</u> ممك ممك الاحفو							
Fossil Fuel	ئة وتساعد s البكتيريا ن مجددا	رات الدفي واع من نيتروجي	ين وهي من غاز الاوزون ة حيث تقوم ان ن لتحويله الى غلاف الجوي	ن اعتباره من fixation ري ينتج اكاسيد النيتروج بانتاج العملية التي تغلق الدور زال مركبات النيتروجي واعادته لا	nia ممک الاحفو هي باخت							
	ئة وتساعد البكتيريا ن مجددا Deni	رات الدفي واع من نيتروجي trifica	ين وهي من غاز الاوزون ة حيث تقوم اذ ن لتحويله الى غلاف الجوي tion: the re	tixation من اعتباره من ري ينتج اكاسيد النيتروج بانتاج العملية التي تغلق الدور زال مركبات النيتروجي واعادته لا duction of nitrates	nia ممک الاحفو هي باخت back							
De-	فة وتساعد البكتيريا ن مجددا • Deni into i	رات الدفي واع من نيتروجي trifica hitroge	ين وهي من غاز الاوزون ة حيث تقوم الن ن لتحويله الى غلاف الجوي tion: the re n gas (N ₂),	ن اعتباره من fixation ري ينتج اكاسيد النيتروج بانتاج العملية التي تغلق الدور زال مركبات النيتروجي واعادته لا	nia ممک الاحفو باخت back rogen							
	s وتساعد البكتيريا ن مجددا Deni into n cycle spec	زات الدفي واع من نيتروجي trifica hitroge . & Thi ies un	ين وهي من غاز الاوزون ة حيث تقوم اذ لتحويله الى غلاف الجوي tion: the re n gas (N ₂), is process is der anaerol	fixation نن اعتباره من ري ينتج اكاسيد النيتروج بانتاج زال مركبات النيتروجي واعادته لا واعادته لا duction of nitrates completing the nit s performed by bar bic conditions	hia ممک ممک الاحفو باخت back rogen cterial							
De-	s وتساعد البكتيريا ن مجددا Deni into r cycle spec • Deni	زات الدفي واع من نيتروجي hitroge a. & Th ies un trifying	ين وهي من غاز الاوزون ة حيث تقوم اذ ن لتحويله الى غلاف الجوي tion: the re n gas (N ₂), is process is der anaerol bacteria u	fixation نن اعتباره من ري ينتج اكاسيد النيتروج بانتاج زال مركبات النيتروجي واعادته لا duction of nitrates completing the nit s performed by bar bic conditions se nitrates in the	hia ممک الاحفو هي s back rogen cterial soil to							
De-	s وتساعد البكتيريا ن مجددا • Deni into r cycle spec • Deni carry	زات الدفي واع من نيتروجي hitroge و. & Th ies und trifying v out re	ين وهي من غاز الاوزون ة حيث تقوم ال ن لتحويله الى غلاف الجوي tion: the re n gas (N ₂), is process is der anaerol bacteria u espiration 8	fixation نن اعتباره من ري ينتج اكاسيد النيتروج بانتاج زال مركبات النيتروجي واعادته لا واعادته لا duction of nitrates completing the nit s performed by bar bic conditions se nitrates in the consequently pro	hia ممك ممك الاحفو هي back rogen cterial soil to poduce							
De-	s وتساعد البكتيريا ن مجددا Deni into r cycle spec • Deni carry N ₂ , v	زات الدفي واع من نيتر وجي hitrifica ف. & Th ies und trifying v out re vhich is	ين وهي من غاز الاوزون ة حيث تقوم اذ ن لتحويله الى غلاف الجوي tion: the re n gas (N ₂), is process is der anaerol bacteria u espiration & s inert & un	fixation نن اعتباره من ري ينتج اكاسيد النيتروج بانتاج زال مركبات النيتروجي واعادته لا واعادته لا duction of nitrates completing the nit s performed by bac bic conditions se nitrates in the consequently pro available to plants	hia ممك ممك الاحفو هي back rogen cterial soil to poduce							
De-	s وتساعد البکتيريا ن مجددا Deni into r cycle spec Deni carry N ₂ , v • occu	زات الدفي واع من نيتروجي hitrifica hitroge . & Th ies und trifying v out re vhich is rs in fr	ين وهي من غاز الاوزون ة حيث تقوم ال ن لتحويله الى tion: the re n gas (N ₂), is process is der anaerol bacteria u espiration & s inert & un ee-living mi	fixation نن اعتباره من ري ينتج اكاسيد النيتروج بانتاج زال مركبات النيتروجي واعادته لا duction of nitrates completing the nit s performed by bar bic conditions se nitrates in the consequently pra available to plants croorganisms	hia ممک محک الاحفر s back rogen cterial soil to oduce							
De- nitrificatior Anaerobic	s وتساعد البکتيريا ن مجددا Deni into n cycle spec Deni carry N ₂ , v occu nitrite &	زات الدفير وراع من نيتروجير hitrifica a. & Th ies und trifying out re vhich is <u>rs in fr</u> amme	ين وهي من غاز الاوزون ة حيث تقوم ال ن لتحويله الى غلاف الجوي tion: the re n gas (N ₂), is process is der anaerol bacteria u bacteria u spiration & s inert & un <u>ee-living mi</u> onia are c	fixation نن اعتباره من ري ينتج اكاسيد النيتروج بانتاج زال مركبات النيتروجي واعادته لا واعادته لا واعادته the sperformed by bar bic conditions se nitrates in the consequently pri available to plants <u>croorganisms</u> onverted directly	hia ممک ممک الاحفر پاخت back rogen cterial soil to oduce / into							
De- nitrificatior Anaerobic ammonia	s البكتيريا البكتيريا o Deni into n cycle spec • Deni carry N ₂ , v • <u>occu</u> nitrite & nitrogen	زات الدفي واع من نيتروجي نيتروجي trifica في & Th ies und trifying out re vhich is rs in fr amme gas (ين و هي من غاز الاوزون ة حيث تقوم اذ ن لتحويله الى tion: the re n gas (N ₂), is process is der anaerol bacteria u bacteria u bacteria u espiration & s inert & un <u>ee-living mi</u> onia are c [N ₂]. This	fixation نن اعتباره من يري ينتج اكاسيد النيتروج بانتاج زال مركبات النيتروجي واعادته لا واعادته لا واعادته ال واعادته ال واعادة ال واعادة ال واعادة ال واعادته وال واعادة ال واعادة ال واعاد ال واعادة ال واعاد ال وا و واعاد ال و وال و و و و و و و و و و و و و و	hia ممک محک الاحفو ه back rogen cterial soil to oduce / into up a							
De- nitrificatior Anaerobic	s البكتيريا البكتيريا o Deni into n cycle spec • Deni carry N ₂ , v • <u>occu</u> nitrite & nitrogen	زات الدفي واع من نيتروجي نيتروجي trifica في & Th ies und trifying out re vhich is rs in fr amme gas (ين و هي من غاز الاوزون ة حيث تقوم اذ ن لتحويله الى tion: the re n gas (N ₂), is process is der anaerol bacteria u bacteria u bacteria u espiration & s inert & un <u>ee-living mi</u> onia are c [N ₂]. This	fixation نن اعتباره من ري ينتج اكاسيد النيتروج بانتاج زال مركبات النيتروجي واعادته لا واعادته لا واعادته the sperformed by bar bic conditions se nitrates in the consequently pri available to plants <u>croorganisms</u> onverted directly	hia ممک محک الاحفو ه back rogen cterial soil to oduce / into up a							
De- nitrification Anaerobic ammonia oxidation	s وتساعد البكتيريا ن مجددا Deni into r cycle spec Deni carry N ₂ , v occu nitrite & nitrogen major pr oceans	زات الدفي واع من اندتروجي hitroge a. & Th ies und trifying out re vhich is rs in fr amme gas (oporti	ين و هي من غاز الاوزون ة حيث تقوم ال ن لتحويله الى tion: the re n gas (N ₂), is process is der anaerol bacteria u espiration & s inert & un ee-living mi onia are c (N ₂). This on of nitro	fixation نن اعتباره من يري ينتج اكاسيد النيتروج بانتاج زال مركبات النيتروجي واعادته لا واعادته لا واعادته ال واعادته ال واعادة ال واعادة ال واعادة ال واعادته وال واعادة ال واعادة ال واعاد ال واعادة ال واعاد ال وا و واعاد ال و وال و وا و و و و و و و و و و و	hia ممک محک الاحفو ه back rogen cterial soil to oduce / into up a							
De- nitrification Anaerobic ammonia oxidation	s البكتيريا البكتيريا ن مجددا Deni into r cycle spec Deni carry N ₂ , v Occu nitrite & nitrogen major pr oceans	زات الدفي واع من اندتروجي hitroge & & Th ies und trifying out ra vhich is rs in fr amme gas (oporti n Spe	ين و هي من غاز الاوزون ة حيث تقوم ال ن لتحويله الى tion: the re n gas (N_2) , is process is der anaerol bacteria u espiration δ s inert & un ee-living mi onia are c (N_2) . This on of nitro	fixation نن اعتباره من ري ينتج اكاسيد النيتروج بانتاج زال مركبات النيتروجي واعادته لا duction of nitrates completing the nit s performed by bac bic conditions se nitrates in the consequently pro available to plants croorganisms onverted directly process makes gen conversion i	hia ممک ممک ممک (الاحفر ())))))))))))))))))							
De- nitrification Anaerobic ammonia oxidation • COMMO Species NH₃	s وتساعد البكتيريا ن مجددا Deni into r cycle spec Deni carry N ₂ , v occu nitrite & nitrogen major pr oceans	زات الدفي واع من اندتروجي hitroge a. & Th ies und trifying out re vhich is rs in fr amme gas (oporti	ين و هي من غاز الاوزون ة حيث تقوم ال ن لتحويله الى tion: the re n gas (N ₂), is process is der anaerol bacteria u espiration & s inert & un ee-living mi onia are c (N ₂). This on of nitro	fixation نن اعتباره من يري ينتج اكاسيد النيتروج بانتاج زال مركبات النيتروجي واعادته لا واعادته لا واعادته ال واعادته ال واعادة ال واعادة ال واعادة ال واعادته وال واعادة ال واعادة ال واعاد ال واعادة ال واعاد ال وا و واعاد ال و وال و وا و و و و و و و و و و و	hia ممک محک الاحفو ه back rogen cterial soil to oduce / into up a							
De- nitrification Anaerobic ammonia oxidation • COMMO Species	s البكتيريا البكتيريا ن مجددا Deni into r cycle spec Deni carry N ₂ , v Occu nitrite & nitrogen major pr oceans On Nitroge Name	زات الدفي وراع من نيتر وجي نيتر وجي نيتر وجي trifica bitroge 2. & Th ies un trifying out re vhich is rs in fr amme gas (oporti on spe ON -3 -3	ین و هي من غاز الاوزون ق حيث تقوم الز ف حيث تقوم الز ن لتحويله الى tion: the re n gas (N ₂), is process is der anaerol bacteria u espiration & s inert & un <u>ee-living mi</u> onia are c (N_2) . This on of nitro ecies Species N ₂ O NO	fixation بن اعتباره من بري ينتج اكاسيد النيتروج بانتاج زال مركبات النيتروجي واعادته لا duction of nitrates completing the nit s performed by bar bic conditions se nitrates in the consequently pra available to plants croorganisms onverted directly process makes gen conversion i	hia ممک ممک ممک (الاحفر ())))))))))))))))))							
De- nitrification Anaerobic ammonia oxidation • COMMO Species NH₃	s البکتيريا البکتيريا ن مجددا Deni into n cycle spec Deni carry N ₂ , v occu nitrite & nitrogen major pr oceans DN Nitroge Name Ammonia	زات الدفي واع من نيتر وجي نيتر وجي نيتر وجي trifica . & Th ies und trifying out re vhich is <u>rs in fr</u> amme gas (oporti on spe ON -3	ین و هي من غاز الاوزون ق حيث تقوم الز غ حيث تقوم الز ن لتحويله الى tion: the re n gas (N ₂), is process is der anaerol bacteria u espiration & s inert & un ee-living mi onia are c (N ₂). This on of nitro ecies Species N ₂ O	fixation من اعتبار من بري ينتج اكاسيد النيتر وج بانتاج زال مركبات النيتر وجي واعادته لا واعادته لا واعادته النيتر وجي duction of nitrates completing the nit sperformed by bar bic conditions se nitrates in the consequently pra available to plants croorganisms onverted directly process makes gen conversion i Name Nitrous Oxide	hia ممک ممک ممک (الاحفر ())))))))))))))))))							

ENVIRONMENTALGEOCHEMISTRY

 N_2H_4

NO₃

 N_2

Hydrazine

Nitrate Ion

Nitrogen

SHAAS HAMDAN

Nitrous

Nitrous Oxide

Nitric Acid

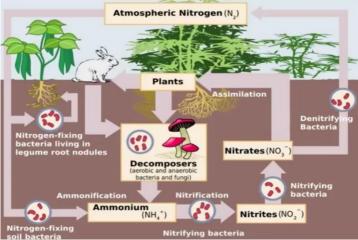
+3

+4

+5

NO₂

NO₂

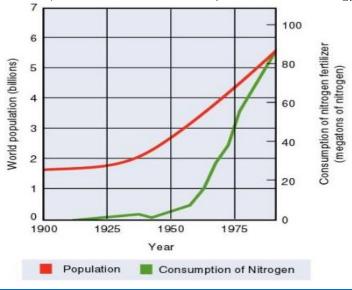

HNO₃

-2

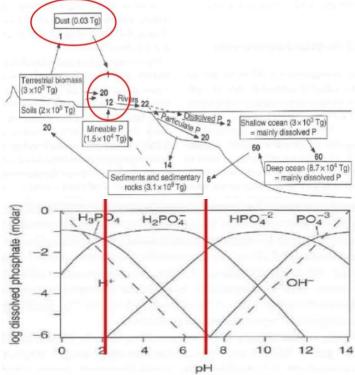
-1

0

3


لماذا النبات لا يأخذ النيتروجين؟ لانه غاز خامل (مستقر) بسبب احتواؤه 3 روابطه الكيميائية تساهمية (covalent bond 3) تجعل منه غاز خامل مدرجين تفاعله مع المماد الاخري (رجتاح طاقة كرردة)

رم)	حامل ويصعب تفاعله مع المواد الأخرى (يحتاج طافه كب
	Common Nitrogen Species
Nitrous oxide (N₂O)	 A Greenhouse, 300 times > potent than CO₂ Formed by (Origin) : denitrification of fertilizers notably in tropical & subtropical soils non anthropogenically enhanced denitrification & nitrification: soil,marine
N-oxide	 Include N monoxide (NO) & dioxide (NO₂)
(NOx)	 Form during combustion & grouped together
Nitric acid (HNO₃)	 Formed by (Origin): 1. forms in atm by oxidation of N-oxides 2. product of volcanic eruptions
Nitrate (NO₃)	A highly soluble ion that is a product of natural oxidation of organic matter & molecule
Urea (NH ₂) ₂ CO	 Environments: crustal with low dissolved O, wetland sediment, deep marine water May be formed by decaying of organic matter


• How are Human Activities Affecting N-Cycle? Industrial fixation N-oxides from fuel combustion

• Effects of increased use of nitrogen fertilizer:

- 1. Eutrophication of industrie & marine ecosystem associated loss of plant & animal diversity
 - 2. acid rain (nitric); & acidification of soils & water
 - acid rain-related losses of essential soil nutrient (i.e. Ca & K important in forested ecosystems)
 - 4. Increased concentration of potent greenhouse gas nitrous oxide (NO) in the atmosphere
 - 5. increased concentrations of nitrogen oxides (contribute to formation of photochemical smog)

PHOSPHORUS CYCLE

الفوسفيت يوجد بالصخور ويتحلل في ال weathering وينتقل عبر للانهار والامطار للمحيط حيث يترسب مجددا بالصخور، وعند تعدين البشر له جزء منه يذهب للغلاف الجوي كغبار ما يؤدي لل eutrophication

- The phosphorus cycle: is the biogeochemical cycle that describes the movement of phosphorus through the lithosphere, hydrosphere, & biosphere
- Phosphorus cycle is simpler cycle because has no any gas phases, & only one valance state P⁵⁺ (unlike many other cycles, the atmosphere does not play a significant role in the movement of phosphorus, because phosphorus are usually solids at the typical ranges of T-P)
- Phosphorus is vital for living organism:
 - 1. Very important component of DNA & RNA
 - 2. Energy transferred via ATP
- **Sources**: major receivers are soils & rocks
 - > major source is soils in apatite
 - can be found in chemical sedimentary rocks
 - can be found in igneous rocks (within some rare minerals e.g. turquoise, autunite, monazite)
- A good starting point for the P-cycle is chemical weathering of hydroxyapatite in soils

$Ca_{5}(PO_{4})_{3}OH+4H_{2}CO_{3} \rightarrow 5Ca^{2+}+3HPO_{4}^{2-}+4HCO_{3}^{-}+H_{2}O$

Soil Conditions	Dominant								
pH = 2-7	H ₂ PO ₄ -								
pH = 7-12	HPO42-								
Very acidic situation(acid mine drainage)	H ₃ PO ₄								
extremely alkaline	PO ₄ ³⁻								

 Factors make P limiting nutrient in soil &aquatic ecosystem (dominantly bound in solid phases)

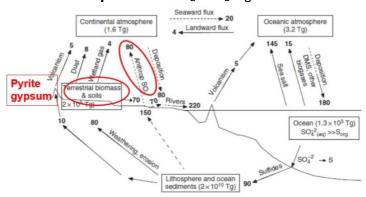
- Insoluble or sparingly soluble in most conditions so in soils their anion (PO₄³-) tends to form poorly crystalline hydrated solids (bonded Ca)
- Apatite resist erosion (stable), slowly released to soil during weathering (Ksp_{apatite} = 10⁻⁵⁸ الذائبية جدا value that would produce equilibrium concentration of dissolved P of = 10⁻⁸ molar)

	Nitrogen	Phosphorous			
Phase	gas in atmosphere	no gas phase			
Source	Atmosphere	Rock			
Fixing	Fixing microbes introduce reactive N to soil & ecosystems	Cannot be fixed from air & introduced by rivers, wind-blown dust, & weathering			
State	Numerous states	Only +5			
Redox	Prone to strong	Prone to redox control if			
control	redox controls	sorted to Fe-oxide			
Solubility	On surface water occure as highly soluble nitrite	insoluble & partitioned into particulate fraction (silt, Clay)			
Limiting nutrients	limiting nutrients in aquatic ecosystem	truly limiting nutrient in ecosystems			

لو كان هناك نبات لم يتم اضافة N له سينمو لانه ستنشأ بكتيريا قادرة على اخذه من الغلاف الجوي، لكن لو لم نضع P في التربة فلن ينمو لان الفوسفور لا يتواجد بالغلاف الجوي وهو incorporated in solid phases لذا لا تستطيع النباتات امتصاصه وبالتالي الفوسفور هو ال limiting reactant

- Humans have caused major changes to the global P-cycle through shipping of P-minerals, & use of phosphorus fertilizer
 - 80% of the mined phosphorus is used to make fertilizers that cause pollution in lakes & streams
 - Over-enrichment of phosphate in marine waters lead to massive algae blooms. the death & decay of these blooms leads to eutrophication
- **Eutrophication**: enrichment of water by nutrient, lead to structural changes to the aquatic ecosystem
 - primary source contributes to the eutrophication is considered as nitrogen and phosphorus
- Phosphorus does enter the atmosphere in very small amounts when the dust is dissolved in rainwater but remains mostly on land, rock, & soil

Phosphorus Cycle:

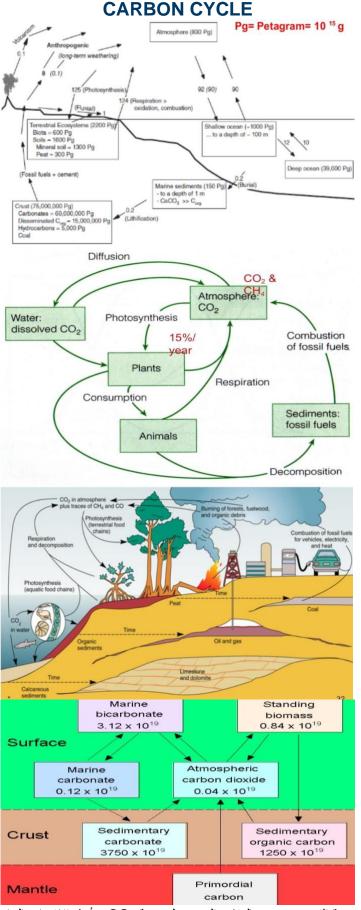

- 1. occur as orthophosphate $(PO_4)_3^-$ in rocks
- 2. Phosphorus-rich deposits are formed in the ocean or from guano, & geologic processes bring ocean sediments to land
- 3. Weathering & minerals release phosphorus in a soluble form where it is taken up by plants, & transformed into organic compounds
- 4. Plants consumed by herbivores & phosphorus is incorporated into tissues & after death the organisms decays, & phosphorus is returned to the soil where a large part of the phosphorus is transformed into insoluble compounds
- 5. Runoff carry part of P back into the ocean
- Phosphates move quickly through plants & animals, the processes that move them through the soil or ocean are very slow, making the phosphorus cycle one of the slowest cycles
- Generally with time soils become deficient in phosphorus leading to ecosystem retrogression

phosphorus transportation processes

- 1. Tectonic uplift & exposure of phosphorusbearing rock (e.g. apatite) to surface weathering
- 2. Erosion & weathering of P-bearing rocks to provide phosphorus to soils, lacks, & rivers
- 3. Riverine & subsurface transportation of phosphorus to lakes & run-off to the ocean
- 4. Sedimentation of particulate phosphorus & eventually burial in marine sediments

SULFUR CYCLE

- Sulfur occurrence:
 - 1. **Biosphere**: In amino acid, protein, & in plants
 - 2. Lithosphere (Dominant): soil, & as pyrites in
 - sediment, & in Marine $(SO_4^2 \text{ oxic } \& S^2 \text{ anoxic})$ 3. **Withosphere**: less in S-minerals (e.g. gypsum)
 - 4. Atmosphere: $as SO_2 \& H_2S gases$



يحدثweathering لل Gypsum او Sulfite في lithosphere جزء منه ينتقل عبر الانهار للمحيط وجزء اخر يبقى بال Soil وتأخذه النباتات:

- عندما نموت النباتات و لا تدفن يحدث decay لا هو ائي وتعود للتربة
- عندنا تدفن النباتات يحدث لها تحلل لأهوائي بفعل البكتيريا وجزء منه يدخل بتركيب المادة العضوية وجزء يدخل في تركيب ال fossil fuel
- يُنتقل من البراكين للغلاف الجوي ويتحد مع الماء ليصنع مطر حمضي ويحدث له reducing فيتحول من Sulfate الى S⁻² وممكن ان يتخد مع H او مع Fe لتكوين sulfite او pyrite
- تأثير الانسان حرق الوقود يحرر 2 -S الموجود به بسرعة اكبر وتكمن خطورته بنكوين المطر الحمضي والذي يذيب كربونات الكالسيوم
- Sources of sulfur:
 - 1. Natural Source: volcanic activity
 - 2. Industrial Source: Human Activity (fossil fule)
- Environmental impact of sulfur on environment:
 - 1. Acid rain (SO₂): cause deforestation, acidify waterways to the detriment of aquatic life, & corrode building materials & paints
 - 2. Acidic drainage (mines): formation & movement of acidic water rich in heavy metals, that forms through reaction of surface & shallow subsurface waters with rocks contain S-bearing minerals, case sulfuric acid

Species	Name		Environments			
PbS	Galena (lead sulfides)	-2				
ZnS	Sphalerite	-2				
CuFeS ₂	Chalcopyrite	-2				
HgS	Cinnabar	-2	Reducing			
(CH ₃) ₂ S	DMS	-2	environment			
(CH ₃) ₂ SO	DMSO	-2	(Wetland			
C ₇ H ₁₄ N ₂ O ₂ S	Aldicarb (synthetic)	-2	sediments, Low oxygen crustal			
H₂S	Hydrogen Sulfide	-2	environments, &			
COS or OCS	Carbonyl sulfide	-2	Deep marine)			
CS ₂	Carbon disulfide	-2				
FeS₂	Pyrite (Iron sulfide)	-2				
FeAsS	Arsenopyrite	-2				
SO	Sulfur Monoxide	+2				
H₂SO₃	Sulfurous Acid	+2				
SO₃⁻	Sulfite Anion	+4				
SO ₂	Sulfur Dioxide	+4				
SF ₆	Sulfur Hexafluoride	+4	Ovidining			
SO₃	Sulfur Trioxide	+4	Oxidizing Environment			
BaSO ₄	Barite (barium Sulfate)	+4	Environment			
CaSO ₄ .2H ₂ O	Gypsum (calcium sulfite)	+6				
KFe ₃ ³⁺ (OH) ₆ (SO ₄) ₂	Jarosit	+5				
H₂SO₄	Sulfuric Acid	+5				
SO₄²⁻	Sulfate Anion	+6				

$FeS_2 + H_2O \rightarrow Fe(OH)_3 + 2H_2SO_4$

دورة الكربون: يوجد بالغلاف الجوي على هيئة CO₂ وتأخذه الأشجار بالبناء الضوئي وعند حرق الأشجار او اكلها من كائنات اخرى وموت وتحلل الكائنات يعود للغلاف الجوي مجددا او يتحلل لاهوائيا بعد دفنها لينتج غاز الميثان والفحم اما البترول يأتي من عمليات التحلل اللاهوائي بالمحيط حيث يتحول CO₂ الى HCO⁻ او ⁻²CO والذي تستهلكه الكائنات الحية ببناء اصدافها و عندما تموت تترسب بقاع المحيط وتكون الصخور الكلسية التي يحدث لها uplifting ويتكون من هذه العملية البترول التدخل البشري: يفترض ان يحبس الكربون بالوقود لملايين السنين لكن الانسان يحرره بكميات كبيرة وبوقت اقل عند حرق هذا الوقود الاحفوري وتكمن خطورته بانه من ال Greathouse Gasses

- Carbon Occurrence:
 - 1. **Biosphere**: Forms the basis of life
 - 2. **Atmosphere**: major role in earth's climate
 - 3. Lithosphere: major agent of chemical Weathering & soil formation (as carbonic acid)
- Forms: occurs in organic & inorganic forms & important constituents of all reservoirs (lithosphere, atmosphere, oceans and living organisms)

auno											
Formula	Name	Name									
CO ₂	Carbon dioxide	n dioxide HCO ₃ ⁻ , CO ₃ ²⁻ bi car									
НСНО	Formalde Hyde	CO ₂ H-CO ₂ H	Oxalatic acid								
C₂H₄	Enthylene	СНО-СНО	Glyoxal								
C₂H ₆	Ethane	CH ₂ OH-CH ₂ OH	Glycolic Acid								
CH₄	Methane	CH ₂ OH-CH ₂ OH	Enthylene Glycol								
			47								

	Oxidation s	tate = [4, -4]
Reservoir	Amount [x10¹⁴g C]	*Carbonites rock
Crust*	rvoir [x10 ¹⁴ g C] list* 750,000,000 ean 400,000 ils 16,000 phere 8,300 Plants 6,000	600,000,000
Ocean	400,000	Dispersed organic C 150,000,000
Soils	16,000	Hydrocarbons (coal)
Atmosphere	8,300	50,000
Land Plants	6,000	30,000
Mantle	In form o	of graphite or diamonds

COMPARISON BETWEEN CYCLES

• Common in all cycles

- 1. essential element in living organisms
- 2. cycled between biota, organic & inorganic forms
- 3. can react with Oxygen
- 4. important of terrestrial & marine ecosystems
- 5. play roles in global climate
- 6. Improving environmental quality of terrestrial & aquatic ecosystems & the atmosphere will require better management of these critical elements
- as a result of immobility behavior of P⁵⁺ it should be easier to control movement from soil to aquatic system
- N & P limiting nutrients: control primary productivity in terrestrial & aquatic ecosystems & affect cycling of C (by controls of photosynthesis & S via plants uptake)
- Formation of carbonic acid in atmosphere exerts a strong control on weathering rates & release P & S to soil
- Formation of sulfuric acid (anthropogenic>>natural rate) can enhance cycling of all dements by speeding up chemical weathering & oxidation of organic matter
- Various species of C,N, & S released to air during combustion of fossil fuels so this anthropogenic activity greatly affects the cycles of these 3 elements

	Ν	P	S	С
Atmospheric fluxes	►	×	✓	<
Mobile (Fixing)	<	×	✓	 Image: A mathematical state of the state of
Phase	All	No Gas	All	All
Source	Atm	Rock	Litho.	All
State	-3, +5	Only +5	-2, +6	-4, +4

PROBLEMS

- 1. Describe the difference between steady state & dynamic equilibrium & provide an example of each
- 2. What is the most oxidation state of N?
- 3. Why microbes exert a strong control on N transformations.
- 4. What is the most oxidation state of S?
- 5. Main ways by which humans have altered S cycle
- 6. Reservoirs from which humans are extracting S
- 7. Indicate chemical reactions responsible for transfer of sulfur into other reservoirs
- 8. Indicate 2 problems resulting from altered S cycling
- 9. microbe facilitate nitrification & denitrification. How
- 10. Both P & N cause eutrophication, indicate by what processes N & P commonly enter aquatic bodies. Show these pathways with a schematic sketch
- 11. Which process returns nitrogen gas into the atm?
- 12. The mean residence time of C in atmosphere
- 13. Describe 2 main means by which C is transferred from atm to ocean (i.e. organic vs. inorganic). & indicate which tends to result in long-term storage
- 14. Main factor limiting practical application of mineral carbonation as a strategy for managing carbon?

car	bonation as a strategy for managing carbon?
Q1	Steady State: flux of a given component
	into the reservoir is equal to the flux out.
	dC/dt = 0
	rate _{form} (increase [C]) = rate _{remove} (decrease [C])
	Ca-flux into sea by rivers transportation
	= rate at which it is removed by
	precipitation of CaCO ₃ . way by which
	Ca is added to oceans not reversible
	Dynamic equilibrium: if rateforward =
	ratereverse so the concentrations don't
	change over time (only in a closed, or
	isolated system). A \Leftrightarrow B
	rate forward rex = rate reverse rex
	• Dissolution of CaCO ₃ in closed system
0 0	$CaCO_3 + 2HCI \leftrightarrow CaCl_2 + H_2O + CO_2$
Q2	From -3 to +5 (N^{2-} & N^{1-} : rare & not exist
00	naturally)
Q3	Providing different forms of N-compounds
	able to be assimilated by higher organisms
	1. N-Fixing : Some type of bacteria take N ₂ from atm & turn it into ammonia
	$N \equiv N + 8H^{+} + 8e^{-} + 16ATP \rightarrow 2NH_3 + H_2 + 16ADP +$
	16Pi
	2. Decomposition : as plants die & buried,
	bacteria convert ammonia into ammonium
	in soil
	$NH_3 + H_2O \rightarrow NH_4^+ + OH^-$ 3. Nitrification: convert NH_4^+ in soils into
	nitrites, & then another type converted
	nitrite into nitrate
	$2NH_4^{+} + 3O_2 \rightarrow 2NO_2^{-} + 4H^{+} + 2H_2O$
	$2NO_2^- + O_2 \rightarrow 2NO_3^-$
	4. Denitrification : Other bacteria reduce
	nitrates to convert it into nitrogen $NO_3^- + NO_3^- \rightarrow N_2 + 2O_2$
01	

Q4 From -2 to +6

Q5	Burning fossil fuels, where humans
	accelerated the process of releasing sulfur
	from fossil fuels
Q6	Lithosphere: majority in Marine
	environment exist as sulfate in soil &
	pyrites in sediments & rocks
Q7	Sulfide in marine fixed by reaction with iron
G	in a process that can be represented as:
	8SO ₄ ² -+2Fe ₂ (OH) ₃ +8H ₂ O+15C→4FeS ₂ +16OH+15CO ₂
	$FeS_2 + H_2O \rightarrow Fe(OH)_3 + H_2SO_4$
	$H_2SO_4 + H_2O \rightarrow HSO_4^- + H_3O^+$
Q8	<i>HSO</i> ₄ ⁻ + <i>H</i> ₂ <i>O</i> → <i>SO</i> ₄ ^{2⁻} + <i>H</i> ₃ <i>O</i> ⁺ 1. Acid precipitation: sulfuric acid derived
QO	from fossil fuel combustion (coal)
	2. Acidic drainage (mines): refining of metal
	contained in sulfide ore. formation &
	movement of acidic water rich in heavy
	metals, forms through reaction of surface &
	subsurface waters with rocks contain S-
	bearing minerals, case sulfuric acid
Q9	Nitrification : bacteria convert NH_4^+ in soils to nitrite
	& then another type converted nitrite into nitrate $2NH_4^+ + 3O_2 \rightarrow 2NO_2^- + 4H^+ + 2H_2O$
	$2NO_2^- + O_2 \rightarrow 2NO_3^-$
	In Denitrification : Other bacteria reduce nitrates to
Q10	convert it into N: $NO_3^- + NO_3^- \rightarrow N_2 + 2O_2$ Nitrogen: enter the aquatic bodies through marine
QIU	fixation & deposition process directly from atm, or
	trough rivers & rainwater from soils & rocks (the
	nitrogen enter the soil itself also by fixation process)
	Phoenhorue: dissolved phoenhorus also enter the
	Phosphorus: dissolved phosphorus also enter the oceans by rivers or rain water from dissolved
	Phosphorus: dissolved phosphorus also enter the oceans by rivers or rain water from dissolved phosphate in mines or phosphorus dust
Q11	oceans by rivers or rain water from dissolved phosphate in mines or phosphorus dust Denitrification
Q11 Q12	oceans by rivers or rain water from dissolved phosphate in mines or phosphorus dust Denitrification
	oceans by rivers or rain water from dissolved phosphate in mines or phosphorus dust Denitrification
	oceans by rivers or rain water from dissolved phosphate in mines or phosphorus dust
Q12	oceans by rivers or rain water from dissolved <u>phosphate in mines or phosphorus dust</u> Denitrification $t_r = \frac{830Pg}{(125+92)} = 3.825$ $t_r = \frac{830Pg}{(125+92)} = 3.825$ 1. يوجد الكربون بالغلاف الجوي على هيئة CO ₂ وتأخذه الاشجار في عملية البناء الضوئي لتصنع السليلوز و عند حرق
Q12	oceans by rivers or rain water from dissolved phosphate in mines or phosphorus dust Denitrification $t_r = \frac{830Pg}{(125+92)} = 3.825$ 1. يوجد الكربون بالغلاف الجوي على هيئة cO ₂ وتأخذه الاشجار في عملية البناء الضوئي لتصنع السليلوز وعند حرق الاشجار او اكلها من كائنات اخرى وموت وتحلل الكائنات
Q12	oceans by rivers or rain water from dissolved phosphate in mines or phosphorus dust Denitrification $t_r = \frac{830Pg}{(125+92)} = 3.825$ 1. يوجد الكربون بالغلاف الجوي على هيئة CO ₂ وتأخذه الأشجار في عملية البناء الضوئي لتصنع السليلوز و عند حرق الأشجار او اكلها من كائنات اخرى وموت وتحلل الكائنات يعود للغلاف الجوي مجددا او تتحلل لا هوائيا بعد دفنها لينتج
Q12	oceans by rivers or rain water from dissolved phosphate in mines or phosphorus dust Denitrification $t_r = \frac{830Pg}{(125+92)} = 3.825$ 1. يوجد الكربون بالغلاف الجوي على هيئة CO ₂ وتأخذه الاشجار في عملية البناء الضوئي لتصنع السليلوز و عند حرق الاشجار او اكلها من كائنات اخرى وموت وتحلل الكائنات يعود للغلاف الجوي مجددا او تتحلل لا هوائيا بعد دفنها لينتج غاز الميثان والفحم اما البترول يأتي من عمليات التحلل
Q12	oceans by rivers or rain water from dissolved phosphate in mines or phosphorus dust Denitrification $t_r = \frac{830Pg}{(125+92)} = 3.825$ 1. يوجد الكربون بالغلاف الجوي على هيئة CO ₂ وتأخذه الاشجار في عملية البناء الضوئي لتصنع السليلوز و عند حرق الاشجار او اكلها من كائنات اخرى وموت وتحلل الكائنات يعود للغلاف الجوي مجددا او تتحلل لا هوائيا بعد دفنها لينتج غاز الميثان والفحم اما البترول يأتي من عمليات التحلل اللاهوائي بالمحيط حيث يذوب CO ₂ في المحيط ويتحول الى
Q12	oceans by rivers or rain water from dissolved phosphate in mines or phosphorus dust Denitrification $t_r = \frac{830Pg}{(125 + 92)} = 3.825$ 1. يوجد الكربون بالغلاف الجوي على هيئة CO ₂ وتأخذه الاشجار في عملية البناء الضوئي لتصنع السليلوز و عند حرق الاشجار او اكلها من كائنات اخرى وموت وتحلل الكائنات يعود للغلاف الجوي مجددا او تتحلل لا هوائيا بعد دفنها لينتج غاز الميثان والفحم اما البترول يأتي من عمليات التحلل اللاهوائي بالمحيط حيث يذوب CO ₂ في المحيط ويتحول الى
Q12	oceans by rivers or rain water from dissolved phosphate in mines or phosphorus dust Denitrification $t_r = \frac{830Pg}{(125+92)} = 3.825$ 1. يوجد الكربون بالغلاف الجوي على هيئة CO ₂ وتأخذه الاشجار في عملية البناء الضوئي لتصنع السليلوز و عند حرق الاشجار أو اكلها من كائنات اخرى وموت وتحلل الكائنات يعود للغلاف الجوي مجددا او تتحلل لا هوائيا بعد دفنها لينتج غاز الميثان والفحم اما البترول يأتي من عمليات التحلل اللاهوائي بالمحيط حيث يذوب CO ₂ في المحيط ويتحول الى اللاهوائي بالمحيط حيث ينوب 2OO في المحيط ويتحول الى HCO ⁻ اصدافها و عندما تموت تترسب في قاع المحيط وتكون
Q12	oceans by rivers or rain water from dissolved phosphate in mines or phosphorus dust Denitrification $t_r = \frac{830Pg}{(125 + 92)} = 3.825$ 1. يوجد الكربون بالغلاف الجوي على هيئة CO ₂ وتأخذه الاشجار في عملية البناء الضوئي لتصنع السليلوز و عند حرق الاشجار او اكلها من كائنات اخرى وموت وتحلل الكائنات يعود للغلاف الجوي مجددا او تتحلل لا هوائيا بعد دفنها لينتج غاز الميثان والفحم اما البترول يأتي من عمليات التحلل اللاهوائي بالمحيط حيث يذوب CO ₂ في المحيط ويتحول الى
Q12	oceans by rivers or rain water from dissolved phosphate in mines or phosphorus dust Denitrification $t_r = \frac{830Pg}{(125+92)} = 3.825$ 1. يوجد الكربون بالغلاف الجوي على هيئة CO ₂ وتأخذه الاشجار في عملية البناء الضوئي لتصنع السليلوز و عند حرق الاشجار او اكلها من كائنات اخرى وموت وتحلل الكائنات يعود للغلاف الجوي مجددا او تتحلل لا هوائيا بعد دفنها لينتج يعود للغلاف الجوي مجددا او تتحلل لا هوائيا بعد دفنها لينتج اللاهوائي بالمحيط حيث يذوب CO ₂ في المحيط ويتحول الى اللاهوائي بالمحيط حيث يذوب 2OO في المحيط ويتحول الى الحواني بالمحيط حيث يذوب 2OO في المحيط ويتحول الى المحواني بالمحيط حيث يدوب 2OO في المحيط ويتحون الى المحواني المحيط وتكون الصخور الكلسية التي يحدث لها uplifting ويتكون من هذه العملية البترول
Q12	oceans by rivers or rain water from dissolved phosphate in mines or phosphorus dust Denitrification $t_r = \frac{830Pg}{(125+92)} = 3.825$ 1. يوجد الكربون بالغلاف الجوي على هيئة CO ₂ وتأخذه الاشجار في عملية البناء الضوئي لتصنع السليلوز و عند حرق الاشجار في عملية البناء الضوئي لتصنع السليلوز و عند حرق يعود للغلاف الجوي مجددا او تتحلل لا هوائيا بعد دفنها لينتج يعود للغلاف الجوي مجددا او تتحلل لا هوائيا بعد دفنها لينتج اللاهوائي بالمحيط حيث يذوب CO ₂ في المحيط ويتحول الى غاز الميثان والفحم اما البترول يأتي من عمليات التحلل اللاهوائي بالمحيط حيث يذوب CO ₂ في المحيط ويتحول الى الحافها و عندما تموت تترسب في قاع المحيط وتكون الصخور الكلسية التي يحدث لها plifting ويتكون من هذه العملية البترول 2. ممكن ان يذوب ثاني اكسيد الكربون الموجود بالجو مباشرة في المحيط ويصنع من هذه العملية كاربونات الكاسيوم طبقا
Q12	oceans by rivers or rain water from dissolved phosphate in mines or phosphorus dust Denitrification $t_r = \frac{830Pg}{(125 + 92)} = 3.825$ 1. يوجد الكربون بالغلاف الجوي على هيئة CO ₂ وتأخذه الاشجار في عملية البناء الضوئي لتصنع السليلوز و عند حرق الاشجار او اكلها من كائنات اخرى وموت وتحلل الكائنات يعود للغلاف الجوي مجددا او تتحلل لا هوائيا بعد دفنها لينتج يعود للغلاف الجوي مجددا او تتحلل لا هوائيا بعد دفنها لينتج الدهوائي بالمحيط حيث يذوب CO ₂ في المحيط ويتحول الى غاز الميثان والفحم اما البترول يأتي من عمليات التحلل الدهوائي بالمحيط حيث يذوب CO ₂ في المحيط ويتحول الى الدهوائي بالمحيط حيث يذوب cO ₂ في المحيط ويتكون من هذه الحضور الكلسية التي يحدث لها uplifting ويتكون من هذه العملية البترول 2. ممكن ان يذوب ثاني اكسيد الكربون الموجود بالجو مباشرة في المحيط ويصنع من هذه العملية كاربونات الكاسيوم طبقا للمعادلات الاتية
Q12	oceans by rivers or rain water from dissolved phosphate in mines or phosphorus dust Denitrification $t_r = \frac{830Pg}{(125 + 92)} = 3.825$ 1. يوجد الكربون بالغلاف الجوي على هيئة CO ₂ وتأخذه الاشجار في عملية البناء الضوئي لتصنع السليلوز و عند حرق الاشجار او اكلها من كائنات اخرى وموت وتحلل الكائنات يعود للغلاف الجوي مجددا او تتحلل لا هوائيا بعد دفنها لينتج عاز الميثان والفحم اما البترول يأتي من عمليات التحلل غاز الميثان والفحم اما البترول يأتي من عمليات التحلل اللاهوائي بالمحيط حيث يذوب CO ₂ في المحيط ويتحول الى الدهائي بالمحيط حيث يذوب وCO في المحيط ويتحول الى الحاف الوائي بالمحيط حيث يذوب وCO ₂ في المحيط ويتكون من هذه الصخور الكلسية التي يحدث لها phosphate الكائنات الحية ببناء الصخور الكلسية التي يحدث لها phosphate الكائنات الحية ببناء المحلو ويتكون من هذه المعلية البترول المعلية البترول لامعادلات الاتية في المحيط ويصنع من هذه العملية كاربونات الكاسيوم طبقا للمعادلات الاتية CO ₂ (from atmosphere) + H ₂ O (from ocean) \rightarrow H ₂ CO ₃
Q12	oceans by rivers or rain water from dissolved phosphate in mines or phosphorus dust Denitrification $t_r = \frac{830Pg}{(125 + 92)} = 3.825$ 1. يوجد الكربون بالغلاف الجوي على هيئة CO ₂ وتأخذه الاشجار في عملية البناء الضوئي لتصنع السليلوز و عند حرق الاشجار في عملية البناء الضوئي لتصنع السليلوز و عند حرق يعود للغلاف الجوي مجددا او تتحلل لا هوائيا بعد دفنها لينتج يعود للغلاف الجوي مجددا او تتحلل لا هوائيا بعد دفنها لينتج اللاهوائي بالمحيط حيث يذوب CO ₂ في المحيط ويتحول الى غاز الميثان والفحم اما البترول يأتي من عمليات التحلل الدهوائي بالمحيط حيث يذوب 2OO في المحيط ويتحول الى الحواني بالمحيط حيث يذوب 2OO في المحيط ويتحون الى الحواني بالمحيط حيث يدوب يوO2 في المحيط ويتحون الى المحانها و عندما تموت تترسب في قاع المحيط وتكون الصخور الكلسية التي يحدث لها publifting ويتكون من هذه المعلية البترول لامعادلات الاتية في المحيط ويصنع من هذه العملية كاربونات الكاسيوم طبقا للمعادلات الاتية CO ₂ (from atmosphere) + H ₂ O (from ocean) \rightarrow H ₂ CO ₃ H ₂ CO ₃ \rightarrow H ⁺ + HCO ₃
Q12	oceans by rivers or rain water from dissolved phosphate in mines or phosphorus dust Denitrification $t_r = \frac{830Pg}{(125 + 92)} = 3.825$ 1. يوجد الكربون بالغلاف الجوي على هيئة CO ₂ وتأخذه الأشجار في عملية البناء الضوئي لتصنع السليلوز و عند حرق الأشجار او اكلها من كائنات اخرى وموت وتحلل الكائنات يعود للغلاف الجوي مجددا او تتحلل لا هوائيا بعد دفنها لينتج عاز الميثان والفحم اما البترول يأتي من عمليات التحلل غاز الميثان والفحم اما البترول يأتي من عمليات التحلل اللاهوائي بالمحيط حيث يذوب CO ₂ في المحيط ويتحول الى الحوائي بالمحيط حيث يذوب يCO في المحيط ويتحول الى الحوائي بالمحيط حيث يذوب بCO في المحيط ويتحون الى الحوائي بالمحيط حيث يذوب بCO في المحيط ويتكون من هذه اصدافها و عندما تموت تترسب في قاع المحيط وتكون العملية البترول العملية البترول د ممكن ان يذوب ثاني اكسيد الكربون الموجود بالجو مباشرة في المحيط ويصنع من هذه العملية كاربونات الكاسيوم طبقا CO ₂ (from atmosphere) + H ₂ O (from ocean) \rightarrow H ₂ CO ₃ $H2CO3 \rightarrow H+ + HCO3-HCO_3^- \rightarrow H+ + CO3-$
Q12 Q13	oceans by rivers or rain water from dissolved phosphate in mines or phosphorus dust Denitrification $t_r = \frac{830Pg}{(125 + 92)} = 3.825$ 1. يوجد الكربون بالغلاف الجوي على هيئة CO ₂ وتأخذه الاشجار في عملية البناء الضوئي لتصنع السليلوز و عند حرق الاشجار او اكلها من كائنات اخرى وموت وتحلل الكائنات يعود للغلاف الجوي مجددا او تتحلل لا هوائيا بعد دفنها لينتج عاز الميثان والفحم اما البترول يأتي من عمليات التحلل غاز الميثان والفحم اما البترول يأتي من عمليات التحلل اللاهوائي بالمحيط حيث يذوب CO ₂ في المحيط ويتحول الى الدهوائي بالمحيط حيث يذوب 2OO في المحيط ويتحول الى الدهوائي بالمحيط حيث يذوب 2OO في المحيط ويتكون من هذه اصدافها و عندما تموت تترسب في قاع المحيط وتكون الصخور الكلسية التي يحدث لها phitting ويتكون من هذه العملية البترول دمكن ان يذوب ثاني اكسيد الكربون الموجود بالجو مباشرة في المحيط ويصنع من هذه العملية كاربونات الكاسيوم طبقا CO ₂ (from atmosphere) + H ₂ O (from ocean) \rightarrow H ₂ CO ₃ $H2CO3 \rightarrow H+ + HCO3-HCO_3^- \rightarrow H+ + CO3-Ca2+ + CO32- \rightarrow CaCO3$
Q12	oceans by rivers or rain water from dissolved phosphate in mines or phosphorus dust Denitrification $t_r = \frac{830Pg}{(125 + 92)} = 3.825$ 1. يوجد الكربون بالغلاف الجوي على هيئة CO ₂ وتأخذه الاشجار في عملية البناء الضوئي لتصنع السليلوز و عند حرق الاشجار او اكلها من كائنات اخرى وموت وتحلل الكائنات يعود للغلاف الجوي مجددا او تتحلل لا هوائيا بعد دفنها لينتج عاز الميثان والفحم اما البترول يأتي من عمليات التحلل غاز الميثان والفحم اما البترول يأتي من عمليات التحلل اللاهوائي بالمحيط حيث يذوب CO ₂ في المحيط ويتحول الى الدهائي بالمحيط حيث يذوب 2OO في المحيط ويتحول الى الدهائي بالمحيط حيث يذوب 2OO في المحيط ويتكون من هذه الصحور الكلسية التي يحدث لها phosphitic الحية ببناء الصخور الكلسية التي يحدث لها uplifting ويتكون من هذه المعلية البترول لامعادلات الاتية في المحيط ويصنع من هذه العملية كاربونات الكاسيوم طبقا CO ₂ (from atmosphere) + H ₂ O (from ocean) \rightarrow H ₂ CO ₃ HCO ₃ ⁻ \rightarrow CaCO ₃ Global Warming (because C in Greathouse
Q12 Q13	oceans by rivers or rain water from dissolved phosphate in mines or phosphorus dust Denitrification $t_r = \frac{830Pg}{(125 + 92)} = 3.825$ 1. يوجد الكربون بالغلاف الجوي على هيئة CO ₂ وتأخذه الاشجار في عملية البناء الضوئي لتصنع السليلوز و عند حرق الاشجار او اكلها من كائنات اخرى وموت وتحلل الكائنات يعود للغلاف الجوي مجددا او تتحلل لا هوائيا بعد دفنها لينتج يعود للغلاف الجوي مجددا او تتحلل لا هوائيا بعد دفنها لينتج اللاهوائي بالمحيط حيث يذوب CO ₂ في المحيط ويتحول الى الدهوائي بالمحيط حيث يذوب 2O ² في المحيط ويتحول الى الدهوائي بالمحيط حيث يذوب 2O ² في المحيط ويتكون الحوا الحوا الذي تستهلكه الكائنات الحية ببناء الدهوائي بالمحيط حيث يذوب 2O ² في المحيط ويتكون الحوا الحوا الذي تستهلكه الكائنات الحية ببناء المحوا وعندما تموت تترسب في قاع المحيط ويتكون المحلو الكلسية التي يحدث لها uplifting ويتكون من هذه المعلية البترول لامعادلات الاتية في المحيط ويصنع من هذه العملية كاربونات الكاسيوم طبقا CO ₂ (from atmosphere) + H ₂ O (from ocean) \rightarrow H ₂ CO ₃ HCO ₃ \rightarrow H ⁺ + HCO ₃ ⁻ HCO ₃ \rightarrow H ⁺ + HCO ₃ ⁻ HCO ₃ \rightarrow H ⁺ + CO ₃ ²⁻ Ca ²⁺ + CO ₃ ²⁻ \rightarrow CaCO ₃ Global Warming (because C in Greathouse gas)
Q12 Q13	oceans by rivers or rain water from dissolved phosphate in mines or phosphorus dust Denitrification $t_r = \frac{830Pg}{(125 + 92)} = 3.825$ 1. يوجد الكربون بالغلاف الجوي على هيئة CO ₂ وتأخذه الأشجار في عملية البناء الضوئي لتصنع السليلوز و عند حرق الأشجار او اكلها من كائنات اخرى وموت وتحلل الكائنات يعود للغلاف الجوي مجددا او تتحلل لا هوائيا بعد دفنها لينتج الأشجار او الله من كائنات اخرى وموت وتحلل الكائنات يعود للغلاف الجوي مجددا او تتحلل لا هوائيا بعد دفنها لينتج اللاهوائي بالمحيط حيث يذوب CO ₂ في المحيط ويتحول الى غاز الميثان والفحم اما البترول يأتي من عمليات التحل اللاهوائي بالمحيط حيث يذوب CO ₂ في المحيط ويتحول الى الموائي بالمحيط حيث ينوب cO ₂ في المحيط ويتحون الى الموائي بالمحيط تترسب في قاع المحيط وتكون الحمور الكلسية التي يحدث لها phosphite الحية ببناء المحلور الكلسية التي يحدث لها phosphite ويتكون من هذه المحلية البترول د ممكن ان يذوب ثاني اكسيد الكربون الموجود بالجو مباشرة في المحيط ويصنع من هذه العملية كاربونات الكاسيوم طبقا في المحيط ويصنع من هذه العملية كاربونات الكاسيوم طبقا CO ₂ (from atmosphere) + H ₂ O (from ocean) \rightarrow H ₂ CO ₃ HCO ₃ \rightarrow H ⁺ + HCO ₃ ⁻ HCO ₃ \rightarrow H ⁺ + HCO ₃ ⁻ Global Warming (because C in Greathouse gas) ONLINE QUIZZEES
Q12 Q13	oceans by rivers or rain water from dissolved phosphate in mines or phosphorus dust Denitrification $t_r = \frac{830Pg}{(125 + 92)} = 3.825$ 1. يوجد الكربون بالغلاف الجوي على هيئة 2O ₂ وتأخذه الاشجار في عملية البناء الضوئي لتصنع السليلوز و عند حرق الاشجار او اكلها من كائنات اخرى وموت وتحلل الكائنات يعود للغلاف الجوي مجددا او تتحلل لا هوائيا بعد دفنها لينتج الاشجار او اكلها من كائنات اخرى وموت وتحلل الكائنات الشجار او اكلها من كائنات اخرى وموت وتحلل الكائنات الشجار او اكلها من كائنات اخرى وموت وتحلل الكائنات الشجار او اكلها من كائنات اخرى وموت وتحل الكائنات الدهوائي بالمحيط حيث يذوب 2O ₂ في المحيط ويتعول الى غاز الميثان والفحم اما البترول يأتي من عمليات التحلل الدهوائي بالمحيط حيث يذوب 2O ₂ في المحيط ويتعول الى الدهوائي بالمحيط حيث يذوب 2O ₂ في المحيط ويتكون من هذه اصدافها و عندما تموت تترسب في قاع المحيط وتكون المحلور الكلسية التي يحدث لها pulifting ويتكون من هذه العملية البترول في المحيط ويصنع من هذه العملية كاربونات الكاسيوم طبقا في المحيط ويصنع من هذه العملية كاربونات الكاسيوم طبقا في المحيط ويصنع من هذه العملية كاربونات الكاسيوم طبقا CO ₂ (from atmosphere) + H ₂ O (from ocean) \rightarrow H ₂ CO ₃ HCO ₃ \rightarrow H ⁺ + HCO ₃ ⁻ HCO ₃ \rightarrow H ⁺ + HCO ₃ ⁻ Global Warming (because C in Greathouse gas) ONLINE QUIZZES <u>NITROGEN CYCLE</u>
Q12 Q13	oceans by rivers or rain water from dissolved phosphate in mines or phosphorus dust Denitrification $t_r = \frac{830Pg}{(125 + 92)} = 3.825$ 1. يوجد الكربون بالغلاف الجوي على هيئة CO ₂ وتأخذه الأشجار في عملية البناء الضوئي لتصنع السليلوز و عند حرق الأشجار او اكلها من كائنات اخرى وموت وتحلل الكائنات يعود للغلاف الجوي مجددا او تتحلل لا هوائيا بعد دفنها لينتج الأشجار او الله من كائنات اخرى وموت وتحلل الكائنات يعود للغلاف الجوي مجددا او تتحلل لا هوائيا بعد دفنها لينتج اللاهوائي بالمحيط حيث يذوب CO ₂ في المحيط ويتحول الى غاز الميثان والفحم اما البترول يأتي من عمليات التحل اللاهوائي بالمحيط حيث يذوب CO ₂ في المحيط ويتحول الى الموائي بالمحيط حيث ينوب cO ₂ في المحيط ويتحون الى الموائي بالمحيط تترسب في قاع المحيط وتكون الحمور الكلسية التي يحدث لها phosphite الحية ببناء المحلور الكلسية التي يحدث لها phosphite ويتكون من هذه المحلية البترول د ممكن ان يذوب ثاني اكسيد الكربون الموجود بالجو مباشرة في المحيط ويصنع من هذه العملية كاربونات الكاسيوم طبقا في المحيط ويصنع من هذه العملية كاربونات الكاسيوم طبقا CO ₂ (from atmosphere) + H ₂ O (from ocean) \rightarrow H ₂ CO ₃ HCO ₃ \rightarrow H ⁺ + HCO ₃ ⁻ HCO ₃ \rightarrow H ⁺ + HCO ₃ ⁻ Global Warming (because C in Greathouse gas) ONLINE QUIZZEES

ENVIRONMENTAL GEOCHEMISTRY

CHEMICAL BONDS

- **Ionization potential (IP):** energy required to remove electron from a neutral atom to infinite distance from the nucleus
- Electron affinity(EA) tendency of atom to attract e-
- Electronegativity (x): ability of atom to attract e-

	IP	EA	Х	Electrons	Form
Metals	Low	Low	Low	Lose	Cation
Non-Metals	High	High	High	Gain	Anion

- Ionic Bond: formed via the electrostatic attraction between oppositely charged ion
 Idolized ionic or electrovalent bonding
- + + -
- Electrostatic attraction represent by Coulomb's

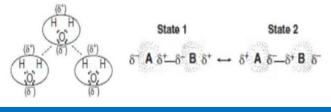
$$\overline{F} = \frac{1}{4\pi\varepsilon_0} \frac{\dot{Z}_+ Z_-}{r^2}$$

E: permittivity, for free space: 8.84x10⁻⁹ [farad/m, C/Volt m] F: attraction force, Z: cation-anion charges, r: cat-ani distance

$$Na \bullet + \bullet CI \longrightarrow Na^{+} + \bullet$$

- Covalent Bond: by sharing of electrons
 - Found in gaseous (e.g. N₂) or organic compound, some mineral (Diamond)
 - May have some ionic character & vice versa because sharing of e- may not be equal

н

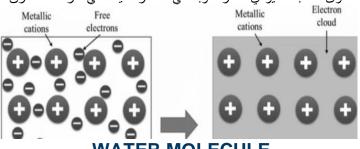

 Polar Covalent bond: sharing of e- pair is unequal (one atom more +ve & other more -ve)

$$H \bullet + \bullet H \longrightarrow H^{\bullet}$$

• Metallic Bond: once valence electrons released by a metal atom they aren't fixed with a specific atom but migrate through the crystal structure as cloud

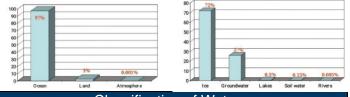
- Weaker than covalent & ionic & are part of the reasons why metal bearing sulfide minerals are relatively unstable at the Earth surface
- Occurs in: sulfide minerals (e.g. pyrite), native elements (e.g. Cu, Ag), & some elements in solid state (e.g. Cu, Cr, Fe, Ni, & Zn)
- **Dipole bonds (VDW & H):** Exist between electrically neutral molecules or compounds with some unequal distribution of electrons
 - Occur in sheet silicate (e.g. Biotite), diamond & graphite, & in water molecules
 - Water has a permanent dipole but van der Waals bonds also exist between electrically neutral molecules or compounds where the electrostatic attractions are temporary

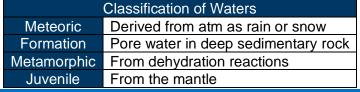
• **Ionic vs Covalent Character:** We use differences in electronegativity to determine ionic character %


	ŀ	Perce	entc	age	of l	onic	cho	ara	cter	of c	a sir	ngle l	oon	ds v	with	0	
Δχ	,	%	Δχ	(%	Δχ	0 /	%	Δχ	%	70	Δχ	%		Δχ		%
0.1		0.5	0.7	7	12	1.3	3	4	1.9	5	9	2.5	79	7	3.1		91
0.2	2	1.0	8.0	3	15	1.4	3	9	2.0	6	3	2.6	82	2	3.2		92
0.3	3	2.0	0.9		19	1.5	4	3	2.1	6	7	2.7	84	1	Fron	n 3.2	2 to
0.4	4 4.0 1.0 22 1.6 47 2.2 70 2.8 86							5	3.9 >92								
0.5	5	6.0	1.1		26	1.7	5	51	2.3	7	4	2.9	88	3			
0.6		9.0	1.2	2	30	1.8	5	5	2.4	7	6	3.0	89	7	4	1	00
H 2.1	1																He
Li L0	Be 1.5	1	С	~~	tro	no	aa	+iv	vity	\mathbf{b}	`	B 2.0	C 2.5	N 3.0	0 35	F 4.0	Ne
Na 0.9	Mg 1.2	Ī		eu	uu	ne	ya	ιν	ity	(X)	AI 1.5	Si 1.8	P 2.1	S 2.5	C1 3.0	Ar
K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.8	Ni 1.8	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8	Kr
Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	1 2.5	Xe
Cs 0.7	Ba 0.9	La-Lu 1.1-1.2	Hf 13	Ta 1.5	W 1.7	Re 1.9	Os 22	Ir 2.2	Pt 2.2	Au 2.4	Hg 1.9	TI	Pb 1.8	Bi 1.9	Po 2.0	At	Rn
Fr	Ra	Ac-Lr					-				1	_				-	

EXAMPLE calculate ionic character for CsF

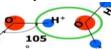
 $\Delta \chi_{CsF} = 4.0 - 0.7 = 3.3 \rightarrow >92\%$ ionic,<8%covalent


- Ionic vs metallic character: why Al good electrical conductor than Na or Fe? Or why Al behave as ductile material whereas Na are brittle (break)
 - The answer for 2 question that the AI have ionic character whereas Na have a metallic character


لماذا الالمنيوم electrical conductor اكثر من الحديد؟ لان عدد الكترونات AI في المدار الاخير اكثر ما يؤدي لنشوء رابطة ايونية لماذا ينكس AI ولا يتكس Na: لان الغيمة الالكترونية في Na تبقى تتحرك بين الذرات الموجبة ما يؤدي لتغير شكله بلا كسر (لاحتوائه metallic بين الذرات الموجبة على نفس مستوى الموجبة بالصف الاخر والسالبة على نفس مستوى السالبة ما يؤدي لتنافرها وبالتالى انكسار العينة التي تعرضت للطرق

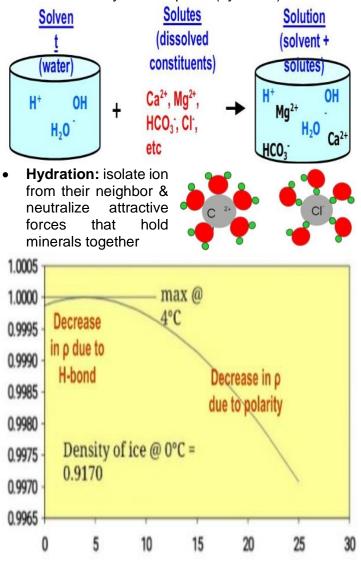
WATER MOLECULE

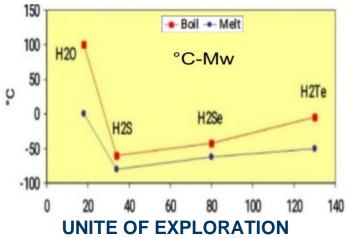
- The earth is only planet in the solar system where water occurs in all three phases (solid, liquid, gas)
- Water covers 70% of the surface, & The amount of water (1.4 Gkm³) in the earth system is constant
- The oceans accounts for over 97% of the earth's water, & 60-75% of the human body is water
- Water moving in circulation called hydrologic cycle
- Occurrence of water on the earth Occurrence of non-oceanic water



- All physical & chemical properties of a compound depend on the character of the chemical bonds (e.g. <u>like dissolves like</u>)
 - water is a polar covalent solvent so ionic compounds have high aqueous solubility

EXAMPLE NaCl are 67% ionic character so it soluble, but Diamond have 0% it nearly insoluble


 each water molecule has +ve & - ve end that can attract to form H-bond



- The H-bonding of water is responsible for
 1. high boiling point & melting point
 - 2. The maximum density is at 4°C
 - 3. Ice is less dense than the liquid water

Properties of water				
Heat capacity Highest of all solids & liquids (except NH ₃)				
Latent heat Of fusion: Higher than most solids & all liquids (except of ammonia NH ₃) Of vaporization: Highest of all substances				
Dissolving ability Dissolves more substances (ionic) & in greater quantity than other common liquid				
Transparency	Relatively high for visible light			
Physical state	only substance occurs naturally in all 3 states			
Surface tension Highest of all common liquids				
Conductivity	Highest of all common liquids (except Hg)			
Viscosity	Relatively low viscosity for a liquid			

 Water as Solvent: Water dissolves every solid or gas, & due to polar nature of water ions will be surrounded by water dipoles (hydrated) in solution

- Units of mass concentration:
 - 1. weigh/ weigh units (wt/wt): ppm , ppb
 - 2. weigh/volume units (S): mg/L , g/L

 $ppm = \frac{m_{solute} in mg}{m_{solution} in Kg}$ $mg/l = \frac{m_{solute} in mg}{V_{solution} in L}$ $ppm = \frac{1g}{10^6 g} = \frac{1mg}{1kg} = \frac{1mg}{L} x \frac{1}{\rho}$

- Units of Molar Concentration:
 - 1. Mole (n) = 6.023×10^{23} atoms or molecules
 - 2. Mole faction (X): is used for solid solutions
 - 3. Molality (m), & Molarity (M): involved in calculation deal with volumetric stoichiometry
 - 4. **Percentage (%):** ratio of solute to the solution, if [solution] is given as a percentage you can assume it is a mass% unless otherwise stated
 - 5. Normality or mole equivalent (equ or N): are similar to moles but take into account valence

$$X = \frac{n_{solute}}{\Sigma n}$$
$$M = \frac{n_{solute} \ [mole]}{V_{solution} \ [L]}$$
$$m = \frac{n_{solute} \ [mole]}{m_{solvent} \ [Kg]}$$
$$N \ (o \ equ) = \ n \ x \ |\zeta_{ion}|$$
$$\frac{mg}{L} = \frac{n \ x \ Mw \ x \ 1000}{V[L]}$$

EXAMPLE a concentrated solution of HCl which is known to be 37.0% & has a solution density of 1.19 g/mL . What is the Molarity of HCl?

$$\%_{HCl} = \frac{37}{100} x100 \rightarrow m_{HCl} = 37g$$
$$n_{HCl} = \frac{37gmol}{36.5g} = 1.014mol$$
$$V_{solution} = \frac{m_{solution}}{\rho} = \frac{100g}{1.19g}mL = 0.0917L$$
$$[HCl] = \frac{1.014mol}{0.0917L} = 11.06M$$

EXAMPLE Calculate N for Ca²⁺, Na⁺, Al³⁺, O²⁻, & H₂O if each have a concentration of 0.002mol/L

N of $0.002M_{Ca^{2*}} = 0.002x2 = 0.004equ/L$ N of $0.002mol/L_{Na^*} = 0.002x1 = 0.002equ/L$ N of $0.002M_{Al^{3^*}} = 0.002x3 = 0.006equ/L$ N of $0.002M_{O^{2-}} = 0.002x2 = 0.004equ/L$ N of $0.002M_{H_2O} = 0.002x0 = 0$

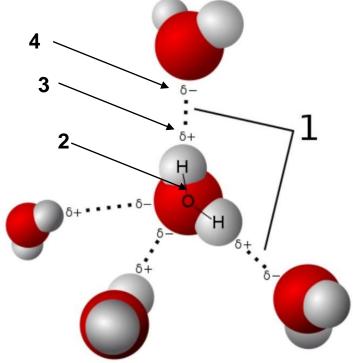
Parameter Expressed in equ: Alkalinity, Hardness

PROBLEMS

The laboratory reported the concentration of calcium ion (Ca²⁺) in a water sample as 92mg/L. calculate the normality of calcium ion (Ca²⁺)

 $[Ca²⁺] = \frac{92 \text{ mg g mol}}{1000 \text{ x } 40.08 \text{ mg g L}} = 0.002295M$ N = Mx ζ = 0.002295 x 2 = 0.004591equ/L N = 0.004591equ/L = 4.591mequ/L

- What are the differences between bonds?
 <u>Ionic (electrovalent)</u> bond of oppositely charged ions
 <u>metallic structure</u> showing electron paths around the
 nuclei of metal atoms (represented as a cloud of +ve
 ions immersed in a cloud of valence electrons)
 <u>Covalent bonds</u> involve electron sharing
 <u>van der Waals bond</u> weak dipole attraction, neutral
 molecules held together by this force
- Why metal bearing sulfide minerals are relatively unstable at the Earth surface Due to metallic bonding behavior, metallic bond are weaker than covalent & ionic bonds
- Calculate the covalent character in Fe₂S (χ: Fe = 1.8, S = 2.5) Δχ = 2.5 - 1.8 = 0.7


 $\Delta \chi = 2.3 = 1.8 = 0.7$ $0.7 \rightarrow 12\%$ ionic character Covalent character = 100% - 12% = 88%

- Al is good electrical conductor than Fe. Why? Because Al have an ionic character whereas Fe have metallic character (number of electrons in the last orbital os Al is higher than Fe, Which leads to formation of an ionic bond in Al)
- Al behave as ductile material whereas Fe are brittle (break or fracture under stress). Why? Because Al have an ionic character whereas Fe have metallic character (due to the electron cloud in the metallic substance that doesn't change)
- What is the [Ca²⁺] (in ppm, i.e. mg/L) in a 47×10⁻⁴M solution of CaCl₂? & What is the [CaCl₂] (in ppm) in the same solution? (Mw: Ca = 40.1g/mol, Cl = 35.5g/mol)

 $CaCl_{2} \rightarrow Ca^{2+} + 2Cl^{-}$ $n_{CaCl_{2}} = n_{Ca} \rightarrow [CaCl_{2}] = [Ca^{2+}] = 47 \times 10^{-4} \text{mol/L}$ $[Ca^{2+}] = 4.7x 10^{-5} x 40.1x 10^{3} \frac{mol}{L} \cdot \frac{g}{mol} \cdot \frac{mg}{g} = 1.9mg/L$ $[CaCl_{2}] = 4.7x 10^{-5} x (40.1 + 2x 35.5) x 10^{3} = 5.22mg/L$

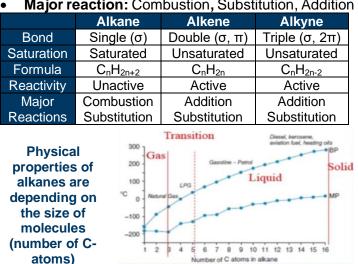
- Which compound is more soluble in water MgO or CaO? Explain your reasoning
 - Water is a polar molecule, so the more the ionic character the more the solubility $\Delta \chi MgO = 3.5 - 1.2 = 2.3 \rightarrow 74\%$ ionic $\Delta \chi CaO = 3.5 - 1.0 = 2.5 \rightarrow 79\%$ ionic CaO are more soluble than MgO

- In the previous question calculate the normality of both Ca & CaCl₂ N_{Ca} = 47x10⁻⁴ x 2 = 0.0148 equ N_{CaCl₂} = 0
- What is the importance of chemical bonds? Determine the behavior (physical & chemical properties) of molecules & compounds
- The hydrogen bond in water molecule held molecules together & responsible for many properties & behaviors of water. What is responsible for the formation of this bond?
 The H-bond in water molecules formed due to polar covalent bonds between H-O in the same molecule which generate -ve partial charge on the O-atom & +ve partial charge on the H-atom (i.e unequal shearing of e- because O has much more x than H)
- Identify each of the following

1: H-bond (intramolecular bond) 2: Polar Covalent Bond (intermolecular bond) 3: Partial +ve charge on H-atom 4: Partial -ve charge on O-atom

• The maximum density of water is at 4°C. However, at temperature less than 4°C the density decrease, & at temperature more than 4°C the density also decreases (this called water abnormality). Explain this behavior

At T = 4°C water reach its maximum density due to Hbond. However, At T < 4°C the density decrease due to H-bond, & At T>4°C the H-bond become unstable (break & bond with another molecule) & The reason responsible for this behavior in this case is the polarity of water molecules

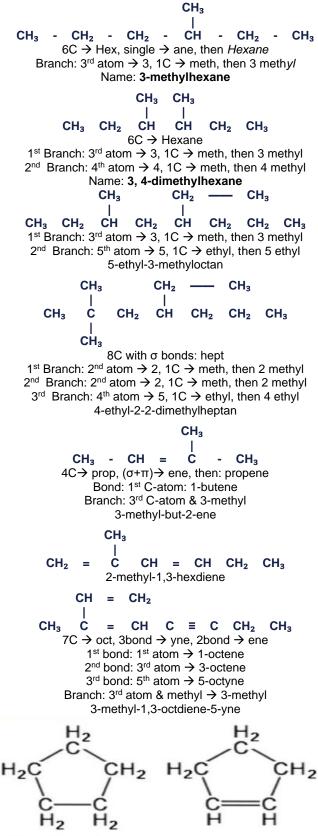

CARBON CHEMISTRY (ORGANIC COMPOUNDS)

Bonding in carbon compounds:

- 1. Single (σ): inactive compounds. e.g. Alkanes
- 2. **Double** (σ , π): active such as Alkanes
- 3. **Triple** (σ , 2π): very active such as Alkynes
- Saturation:
 - 1. Unsaturated: not all C-atom involve in bonding (there is free e-) such as Alkenes & Alkynes
 - 2. Saturated: all C-atoms are involve in bonding
 - Chemical formula's types for C-compounds:
 - 1. **Molecular**: Number of atoms (C_2H_6)
 - 2. Structural: arrangement (geometry) H-Ċ—н of atoms in the compounds in detail н́н́
 - 3. Condensed: same as structural but in simpler forms (CH_3-CH_3) , the most commonly used

HYDROCARBONS

- **Contain:** C & H (major source is crude oils)
- Major type: alkanes, alkenes, alkynes, & aromatic
- Major reaction: Combustion, Substitution, Addition



NAMING SYSTEM

6 8 10 Eth Prop But Pent Hex Hept Oct Non Meth Dec لتسمية اى مركب اتبع الخطوات الاتية: عد ذرات الكربون في السلسلة باستثناء الافرع واكتب عددها .1

- حدد الروابط الموجوّدة فلو كانت كل ذرات الكربون بها رابطة واحدة .2 ضتضيف المقطع ane وإذا كان رابطتين تضيف المقطع ene واذا كان 3 تضيف المقطع yne لعدد ذرات الكربون (...propane, propene)
- اذا وجدت فروع فهي تسمى alkyls حيث تعد عدد ذرات الكربون بها .3 وتضيف المقطع yl آلي اخر الاسم CH3 methyl, C2H5 ethyl,) وتضيف المقطع C_nH_{2n-1} ومعادلة الفروع هي $(C_3H_7 \text{ propy})$.
- الاولوية في الترقيم: بحالة وجود فروع فقط تبدأ بالعد من الجهة الاقرب .4 للفرع وفي حالة وجود روابط تبدأ بالعدَّ من الجهة الاقرب للرابطة
 - في حالة وجود اكثر من فرع نضيف عدد الافرع (...di, tri) .5
 - في حال وجود مركبات عطرية (بنزين) نضيف كلُّمة Cycle .6
 - بتفاعلات الأستبدال نضيف مقطع قبل الاسم مثل (cloromethan) .7 8
 - فى المركبات الكحولية تضيف (Anol)، وفي الحُموض تضيف (Nic) CH₃-CH₂-CH₂-CH₃ $4C \rightarrow But$, (single σ) \rightarrow ane Name: Butane

CH₃-CH=CH-CH₃ $4C \rightarrow But$, Double $(\sigma+\pi) \rightarrow 2$ -ene Name: 2-Butene

CH₃-C≡C-CH₃

 $4C \rightarrow But$, Triple (σ + 2π) \rightarrow 3-yen

Name: 3-Butyne

CH₃ CH₂ CH₂ CH₂ CH₂ CH₃

 $6C \rightarrow Hex$, $14H \rightarrow ane$, then **Hexane**

Cyclopentane

Cyclopentene

ENVIRONMENTALGEOCHEMISTRY

SHAAS HAMDAN

ISOMERS

- Isomers: are molecules or polyatomic ions with identical molecular formulas (have same numbers of atoms of each element with distinct arrangement)
 - On other words: have the same molecular formula but different structural formula
- e.g. butane & 2-methylpropane have the same molecular formulas but differ in all chemical & physical properties & structural formulas

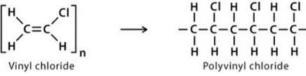
Butane (C_4H_{10}): CH_3 - CH_2 - CH_2 - CH_3 2-methylpropane (C_4H_{10}): CH_3 -CH- CH_3

CH₃ MAJOR REACTIONS

- Alkanes: are saturated hydrocarbons (unreactive) but are characterized by combustion & substitution (limited in high temperature)
 - Combustion: At high temperature alkanes react vigorously & exothermally with oxygen C_nH_{2n+2 (g)} + O_{2(g)} → H₂O_(g) + CO_{2(g)} + E
 - Substitution: with halogens (F, B, Cl, & I) in the presence of light (UV wave)
 - Cl₂ (or Br₂) + UV → 2Cl (or 2Br) Cl + CH₄ → CH₃ + HCl

$$CH_3 + CI_2 \rightarrow CH_3CI$$
 (chloromethane) + CI

$$CH_3CI + CI_2 --> CH_2CI_2$$
 (dichloromethane) + CI

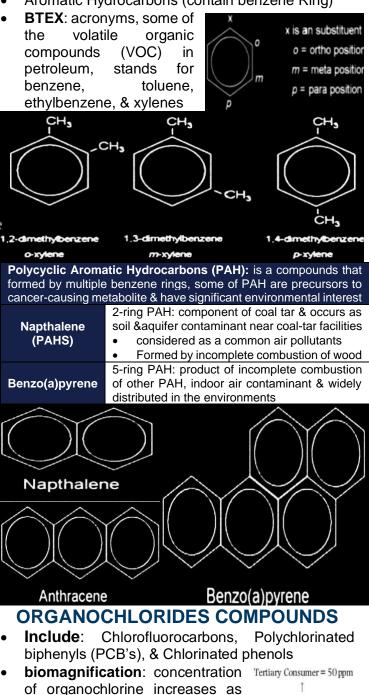

- Alkenes & Alkynes: are unsaturated hydrocarbons (reactive) & characterized by additional reactions
 - Halogenation: convert Alkenes into halo- \geq Alkanes by reaction with halogens (CI, Br, I, F) С-н Br Br Ethene Bromine Dibromo ethane Hydration: convert Alkenes into Alkohol (-anol) OH С-н н Ĥ Ethene Water Ethanol Hydrogenation: convert Alkynes into Alkanes н н н н

$$C = C + H - H \longrightarrow$$
Ethene Hydrogen

Polymerization: convert Alkenes or Alkenes into polymorphs (التفاعل الاساسي في الصناعات البلاستيكية)

H-C-C-H

Ĥ Ĥ Ethane



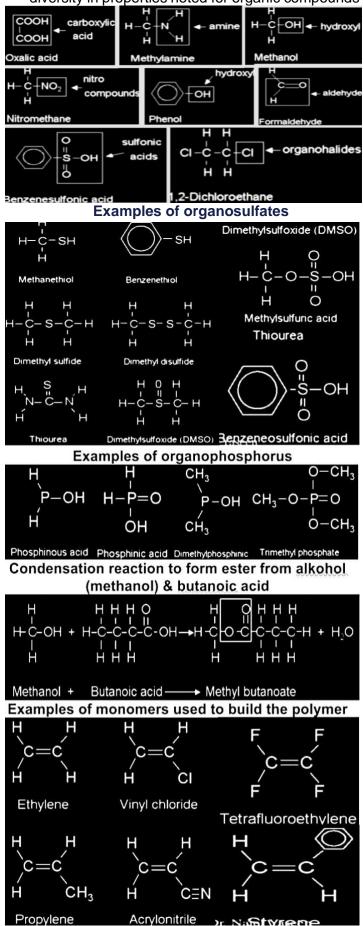
AROMATIC (ARYL) HYDROCARBONS

• Aromatic hydrocarbons: have closed ring of 6C atoms, with H shape with 3C having double bond with connected C & single bond with another C

- Such a ring is referred to as a benzene ring & all hydrocarbons containing one or more rings are referred to as aromatics or aryl compounds
- Aromatic Hydrocarbons (contain benzene Ring)

- one moves higher in food chain
 Organochlorine are soluble in organic solvent, so they concentrate in fatty tissues
- Secondary Consumer = 5 ppm ↑ Primary Consumer = 0.5 ppm ↑ Primary Producer = 0.05 ppm
- Non Aqueous-Phase Liquid (NAPL)
 - LNAPL: slightly soluble halogenated hydrocarbon
 - > DNAPL: Insoluble, Alkanes, & Petroleum

BTEX Hydrocarbon	Solubility in distilled water [ppm]	Solubility in sea water [ppm]
Benzene	1696	201
Toluene	580	50
Ethylbenzene	161	111
O-xylene	171	130
m-xylene	148	106
p-xylene	156	111


- e.g of DNAPL: Halogenated or Non-Halogenate volatile, Halogenated semivolatiles, & Miscellaneous (Coal Tar)
- **Polymers:** any long molecules formed by smaller units called monomers

Addition Polymer: formed by same monomers Condensation Polymer: different monomers

Condei	nsation Polymer: different monomers
Chloranated	Derived from benzene rings by addition of at least once
phenols	hydroxyl group in place of H atom
Pentachloro- phenol	Is a toxic liquid, result if all 5 H-atoms in benzene are replaced by CI atoms
Polychlorinated biphenyls (PCB)	 2 benzene ring joined by single bond with attached Clatoms. have significant environmental & health hazard They are insoluble in water but very soluble in fatty or oily substances so accumulate in environment & subsequently in fatty tissues of birds & fish used as coolant for power transformer & capacitor Dibenzofuran: produced by combustion of PCB in presence of oxygen
Dichlorodiphenly- trichloroethane (DDT)	 Polychlorinated molecule consist of 2 benzene rings joined by a chlorinated ethane group, Each ring has Cl atom substituting for H atom Organochlorine insecticide, low mammalian toxicity & persistence in environment, it was considered as a good insecticides. But some animales metabolize it & form DDE which interfere with reproduction > the most well-known consequences of this phenomenon were the recipitous drops in populations of eagles, peregrine falcons & other predatory birds due to biomagnification of synthesized rganochlorine (DDT & PCB) > predatory bird populations begun to rebound in response to restrictions on DDT, & PCB family of chemical compounds, unintentional
Dioxin	 byproducts of certain industrial, non-industrial, & natural processes, involving combustion Different compound have different toxicity TCDD: considered as most well studied & toxic form of dioxin. present in herbicides & fungicides dioxin types vary greatly in toxicity, some of them 10,000 times less toxic than TCDD Origin: No one makes dioxin on purpose. But through incinerators, the manufacture of certain herbicides, & pulp & paper bleaching were among the largest industrial sources of dioxin
(DH OH
CI	Phenol
Pentach	lorophenol
	Chloranated phenol
CI	CI
3	2 2' 3'
1//	
-	
(CI)n =	Polychlorinated biphenyls (PCB) (CI)n
5	6 6' 5' (Ci)n
CI-	
Dichlorodiphenlytr	
Dichlorodipheniytr (DDT	
9	10 1
CI	
	Dioxin 3

FUNCTIONAL GROUP

 Organic molecules can contain other elements such as oxygen, Nitrogen⁴ & halogens. These atoms occur in functional groups that are attached to the main carbon skeleton & lead to the great diversity in properties noted for organic compounds

ORGANIC MATTER IN THE ENVIRONMENT

HUMIC SUBSTANCES

- Humic Substances: naturally occurring compound of biogenic, heterogeneous organic substances that can be characterized as being yellow to black in color, of high molecular weight & refractory
- Found at the surface in soils, brown coal, fresh to marine water, marine to lacustrine sediments
- Distinction between the types of substances is based on their solubility in acids & bases

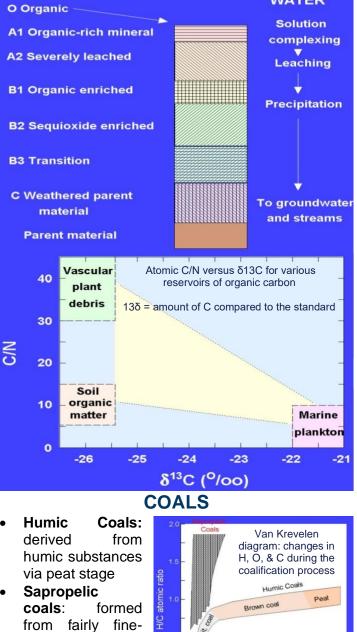
Types of Humic Substance (Pigmented Polymers)					
	Humin	Humic Acid	Fluvic Acid		
As acid	Insoluble	Soluble	Soluble		
As base	Insoluble	Insoluble	Soluble		
Mw	Higher	Intermediate	Lower		
C%	Higher	Intermediate	Lower		
O%	Lower	Intermediate	Higher		
Acidity	Lower	Intermediate	Higher		
IEC*	Lower	Intermediate	Higher		
Solubility	Lower	Intermediate	Higher		
Pz	Higher	Intermediate	Lower		
Intensity	Higher	Intermediate	Lower		
of color	Dark,	Gray-black,	Light-yellow,		
	Black	Dark-brown	yellow-brown		

*IEC: ion exchange capacity, Pz: Polymerization

- humic & fulvic acids don't have fixed compositions, but rather consist of a varied array of alkane chains & rings, aromatic, carboxyl & hydroxyl groups, & some Sand N-based functional groups
 - Humic acid is richer in C more than fulvic acid \geq
 - \triangleright fulvic acid is richer in O more than Humic acid

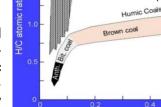
Composition	Humic	: Acids	Fulvic Acids	
Carbon (%wt)	53.6	- 58.7	40.7 – 50.6	
Hydrogen (%wt)	3.2 -	- 6.2	3.8 – 7.0	
Nitrogen (%wt)	0.8	- 5.5	0.9 – 3.3	
Oxygen (%wt)	32.8 - 38.3		39.7 – 49.8	
Sulfur (%wt)	0.1 – 1.5		0.1- 3.6	
Mol. Wt. (Daltons)	2000 – 5000		500 – 2000	
H/C (atomic)	0.8		1.3	
O/C (atomic)	0.5		0.8	
Composition of humic substances in various environmen				
Arom	atio HC	LI/C	Malaaularuuinht	

		Aromatic HC	H/C	Molecular wight
1	Ground	-	0.7-1.2	500-10 ⁴
Water	Surface	17-30%	0.7-1.1	<10⁴
٨	Sea	<15%	1.0-1.6	10 ³ -10 ⁶
ant	Lack	<15%	1.6	<10 ³
Sediment	Marine	<15%	1.0-1.5	-
se	Soil	20-35%	0.5-1.0	10 ³ -10 ⁶


SOIL & MARINE ORGANIC MATTER

Organic Matter	Porosity	рН	Major sources & C/N ratios
Marine	60-90%	7-8	Surface layers are oxic, but with increasing depth pore water become anoxic (Low C/N ratio)
Soil	30-60%	4-8.5	 Input of organic matter fall (root) invasion with C/N>25 Total microbial biomass = 2 - 3% with low C/N (<15)

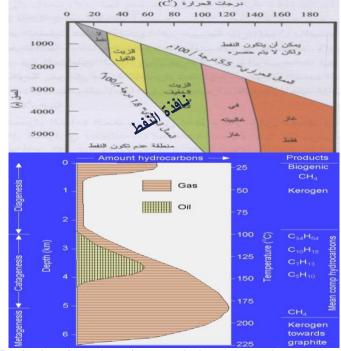
Soil = organic compound + Air (gasses) + water


Organic compounds concentrated in O-horizon

arained organic mud in quiet, Onallow

deficient	sh
water	
· · ·	

O/C atomic ratio


~~~					
Concentration ranges in coal for some elements [ppm]					
Cr	2.6 – 25.4	U	0.2-3.8		2-50
Sb	0.1-7.3	Pb	3- 20		6-54
۷	6- 109	Se	0.4-3.3		0.5- 3.7
W	0.2- 1.3	Со	1.1 – 24.1		0.6 – 10.3
Zn	3- 65	As	0.7-31		
	inorgonia	A	lation no occo	alation	

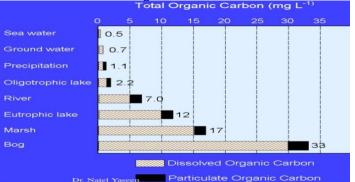
inorganic Association, no association

- Inorganic Association: from minerals in coal that aren't decomposed
- No association: the origin isn't known
- Sulfur in coal are combined with organic molecules or as physically separate sulfide minerals
- Sulfur occurs in reduced forms because organic rich depositional environment is reducing
  - In presence of Fe pyrite & marcasite forms  $\geq$  $\triangleright$
  - In absence of Fe, free H₂S & polysulfides form

## PETROLEUM

- Is any hydrocarbon-rich fluid derived from kerogen by increases in pressure & temperature
- Kerogen: polymeric organic material, occur in sed. rocks as finely disseminated organic macerals




Production of petroleum from a typical reservoir rock assuming an average geothermal gradient. the narrow P-T range over which oil is produced (petroleum window). With increasing T, the size of the mean hydrocarbon molecule decreases. During catagenesis,

hydrocarbon chains break off & are expelled from the kerogen. During metagenesis, only methane is released

During metagenesis, only methane is released					
Elemental composition of crude oil					
C (%wt) 82.2-87.1 N (%wt) 0.1-4.5					
H (%wt)	11.8-14.7	Other (wt%)	<0.1		
S (%wt) 0.1-5.5 Ni (ppm) 0.3-200					
<b>O</b> (%wt) 0.1-4.5 V (ppm) 0.3-1000					
٨	secciptos with	ocine & acabaltan	05		

Associates with resins & asphaltenes

- **Classification of petrol based on S-content:** 1. Bitter: contains high amount of Sulfur
  - 2. Sweet: smaller amount of S (more valuable)
- dissolved organic carbons (DOC): remains after passing through 0.45µm filter
- Particulate organic carbons (POC): particulate matter retained by 0.45µm filter
- Total organic carbons (TOC): POC + DOC
- Sources of Carbon: depending on the water bodies that carries the carbon & Aquafer
  - 1. Allochthonous: from Soil & plants (outside the aquatic system), in small lakes (streams, lacks)
  - 2. Autochthonous: algea (from aquatic system), dominant in large lacks & oceans



Average organic carbon concentrations for various systems, the actual range in TOC substantial & depends on a variety of factors.

did to the second second					
Median concentrations of organic carbon (DOC) in aquifers					
Sands	0.70	Oil Shale	3.00		
Gravels	0.70	Humic Colored	10.0		
Sandstones	0.70	Petroleum	100		
Igneous	0.50	Association	100		
		CCARRON			

# ANTHROPOGENIC CARBON INPUTS

- BOD): Insecticides, المبيدات الحشرية Herbicides, & Fungicides
- Soft Pesticides: organophosphors, have a short residence time in the environment & highly toxic
- Hard pesticides: organochlorine, persistent in the env. but have low toxicity in mammalian systems
- Toxicity usually expressed as Lethal Dosage (LD₅₀)
- Lethal Dosage (LD₅₀): The amount of chemicals per unit of body mass required to produce death in 50% of an exposed animal population
  - pesticide with  $LD_{50} = 10 \text{ mg/kg}$  is 10 times more  $\geq$ toxic than a pesticide with  $LD_{50} = 100 \text{ mg/kg}$
  - This unit of measurement is specific for a  $\geq$ certain animal usually rats & pigs

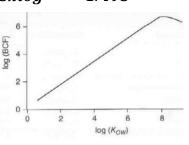
I ne lower the LD value, the higher the risk					
		Solubility	LD ₅₀	logKow	logBCF
	HCB	0.0062	3,500-10,000	5.3	3.5
σ	DDT	0.0034	115	3.9-6.2	2.2-4.3
Hard	Toxaphene	n/a	85	2.9-3.3	1.2-1.6
<u> </u>	Dieldrin	0.20	46	5.1-6.2	3.3-4.3
	Mirex	0.20	700	5.8	3.9
t	Malathion	145	1,375-2,800	2.7	1.0
Soft	Parathion	24	3.6-13	n/a	—
0)	Atrazine	30	1,870-3,080	2.3	0.7

# The lower the LD value, the higher the risk

- Factors controlling fate & transport of organic compound in environment
  - 1. Partitioning of the compound into gaseous (Vapor pressures VOC), liquid or solid phases
  - 2. The solubility of the compound: Kow is directly proportional to the adsorption & solubility in organic compound (& inversely in water)

$$K_{ow} = \frac{[Octanol]}{[Water]}$$

Values of K reported as log


- 3. The degree to which the organic contaminant in adsorb to mineral or organic matter in soil
- 4. p of liquid organic compounds relative to water
- 5. Extent in which compound undergo degradation (decomposition into CO₂, O₂, & other products)

# **BIOCONCENTRATION FACTOR (BCF)**

**Bioconcentration (Bioaccumulation) factor** (BCF): is the accumulation of a chemical in living organisms (biota) compared to the concentration in water, expressed the tendency of organic chemical in water to concentrate in the fatty tissue

 $log^{BCF} = 0.935 x log^{K_{ow}} - 1.495$ 

- Kw α stronalv partitioned into the fatty tissue
- If  $\log K = 7-8$  or greater  $\rightarrow$  strongly absorbed to sediments & unlikely to enter living tissue



# **ENVIRONMENTAL MINERALOGY**

### **REMEDIATION PROCESS**

Precipitation	<ul> <li>Precipitation of organic matter occurs when there is a change in the ionic strength (I)</li> <li>I are inversely proportional to the solubility</li> <li>Occurs where fresh water meets sea water</li> </ul>				
Volatilization	non polar molecules with low Mw have greatest vapor pressure & mostly evaporated • Henry's law: represent the partition of organic compound between liquid & vapor • Henry's constant (H) is inversely related to the concentration of volatile liquid in water $H_i = \frac{[in  vapor]}{[in  water]}$ $Cycles = \frac{-ln[X_f]/[X_i]}{H_i}$				
Sorption & Partition	<ul> <li>The dissolved organic carbon is partitioned between the aqueous phase &amp; the particles C_{ads} = K_dxC_{soln}</li> <li>Organic Acid &amp; Base Adsorption inversely related to pH &amp; degree of dissociation</li> <li>Partition of organic chemicals between soil &amp; water: partition coefficient is normalized to organic C-content of the soil K_{oc} = (k_ax 100)/(%0C)</li> </ul>				
Biological Processes	<ul> <li>POC: is removed by consumers &amp; decomposers</li> <li>DOC: is removed by microbial action</li> <li>Microbial decomposition related to molecule's size</li> <li>Microbial Decomposition         <ul> <li>in aerobic condition: in streams &amp; lakes (surface water reach in O) produces CO₂</li> <li>In anaerobic conditions: produces CH₄</li> </ul> </li> <li>Degradation halflife: the time taken for 50% of organic compound to be degraded</li> </ul>				
Redox	Oxidation & Reduction				
	f [hanzana] in water is 1000ppm & water is				

**EXAMPLE** if [benzene] in water is 1000ppm & water is in contact with air, calculate concentration of benzene in the air in mol/L. (H = 0.22849, Mw = 78g/mol)

$$1mol = \frac{ppm}{1000xMw} \to 1000ppm = \frac{1}{78}mol$$
$$H_i = \frac{78LxX}{1mol} = 0.22849 \to X = 2.929x10^{-3}$$

**EXAMPLE** how many liters of air must we pass through system for each liter of contaminated water to reduce benzene contamination to 10% of its original concentration in groundwater (H 0.22849, Mw 78g/mol)

$$Cycles = \frac{-ln(0.1/1)}{0.22848} = 10 \rightarrow 10L_{H_20}$$

**EXAMPLE** If napthalene concentration in groundwater was 3.2mg/L. Calculate concentration of napthalene adsorbed on the sedimentary particles. (K = 137 L/Kg)

$$C_{ads} = \frac{137L}{Kg} x \frac{3.2mg}{L} = 438ppm$$

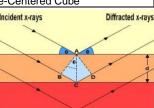
**EXAMPLE** If percolation rainwater via soil contains 3ppb DDT. Organic makes up 3% of the soil. Calculate the amount of DDT absorbed/g of soil. (Log Koc = 5.18)

$$C_{soln} = 3ppb = 3ng/g$$
  
 $C_{ads} = K_{oc}xC_{soln} = 1.513x10^5x3 = 454\mu g/g$   
 $454, 0.03 = 13.6\mu g DDT g^{-1}of soil = 13.6ppm$ 

	Half-life in days					
Compound	Aerobic de	composition	Anaerobic decomposition			
	Minimum	Maximum	Minimum	Maximum		
Cresol	<1	29	10	49		
Phenol	<1	4	8	28		
Napthalene	20	20	25	258		
Benzene	5	16	112	720		
Xylene	7	28	180	360		
Methyl parathion	15	70	1	7		
Aldecarb	20	361	62	635		
Lindane	31	413	6	31		
Dieldrin	175	1080	1	7		
DDT	730	5708	16	100		

# MINERALOGY

- Under certain conditions (redox, pH, dissolved solids, microbial community) a given mineral may dissolve, releasing into solution components that can range from major ions to trace elements
- under a different set of conditions, a given mineral will crystallize from solution, & in doing so will remove from solution major or trace components


remove	e from solution major or trace co	mponents
Class	Chemical characteristics	Examples
Borates	Various element combination with boron	Borax
Carbonate	Metals in combination with carbonate	Cal,Cerrusite
Halides	Alkali metasl or alkaline earths in	Halite, &
nallues	combination with halogens (F, Cl, Br, I)	Fluorite
Hydroxide	Metal in combination with OH	Brucite
Elements	Metallic or nonmetallic pure elements	Au, C, Ag
Oxides	Metals in combination with oxygen	Hematite
	Metals in combination with silica SiO ₄ ⁴	Quartz
Silicates	that forming 3D networks, sheets, chains	Forsterite
	& isolated tetrahedra	Orthoclase
Phosphate	Elements in combination with PO ₄	Apatite
Arsenate	Elements in combination with AsO ₄	
Vanadate	Elements in combination with VO ₄	Carnotite
Chromate	Elements in combination with CrO ₄	
Tungstate	Elements in combination with WO ₄	Scheelite
Molybdate	Elements in combination with MoO ₄	
Sulfates	Metals in combination with sulfate SO ₂ ^{2⁻}	Barite
Sulfidee	Metals in combination with reduced S or	Pyrite
Sulfides	chemically similar elements (As,Se,Te)	Galena

• Coordination Number (CN): is the packing of anions around a cation, calculated by radius ratio

RR	_	ка
ΠЛ	_	Rc

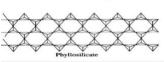
		AC AC
RR	CN	Arrangement Of Anions (Geometry or Shape)
<0.155	2	Linear
0.155-0.225	3	Trigonal Planer
0.225-0.414	4	Tetrahedral
0.414-0.732	4	Square Planer
0.414-0.732	6	Octahedral
0.732-1.000	8	Body-Centered Cube
>1.000	12	Edge-Centered Cube

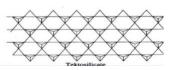
Bragg's law: for crystal structure, is an angle of incidence & diffraction if Bragg's conditions are met



#### D = interplanar spacing

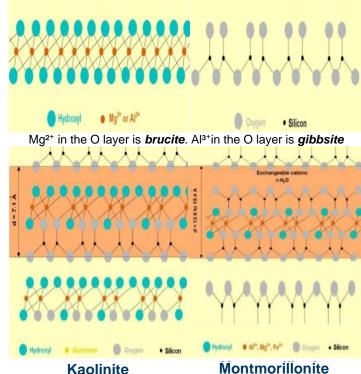
<ul> <li>Properties of the silicate crystal classes</li> </ul>
----------------------------------------------------------------


- 110	Defiles of the silicate crystal classes					
Class	Other Terms	Si:O Ratio	Example	#shared Corners	Unit	
Neso-		1:4	Olivine	0	SiO44-	
Soro-		1:3:5	Melilite	1	Si ₂ O ₇ ⁶⁻	
Cyclo-	Ring	1:3	Beryl	2	SiO ₃ ³⁻	
Ino-	Single Chain	1:3	Augite	2	SiO ₃ ³⁻	
Ino-	Double Chain	1:2.75	Hornblende	2.5	Si ₄ O ₁₁ ⁶⁻	
Phyllo-	Sheet	1:2.5	Kaolinite	3	Si ₂ O ₅ ²⁻	
Tecto-	Framework	1:2	K-feldspar	4	SiO ₂	





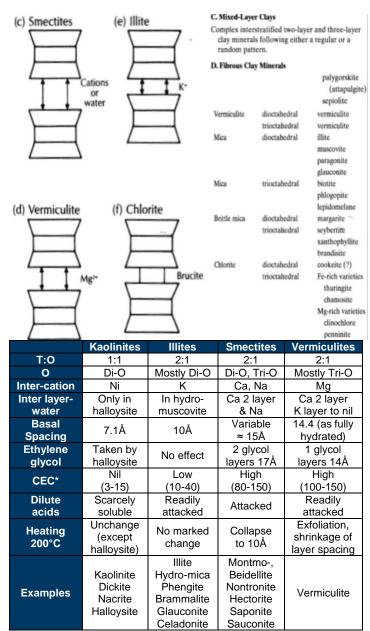






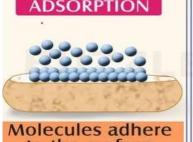

## **CLAY MINERALS**

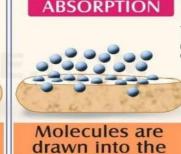

- Clay mineral: phyllo-or sheet-silicates, fine grained hydrous silicate composed of layers of tetrahedrally & octahedrally coordinated cations
- Importance of Clay minerals:
  - 1. **High reactive (due to fine grain size)**: play a role in adsorption or release of trace metals, organic compounds, & potential contaminants
  - Paleoclimate: formed by Chemical weathering (major component of soils) so their composition reflects environment in which the soil is formed
  - 3. **Physically mobile (due to fine grain size):** play a role in transportation of adsorbed contaminants or plant nutrients
  - 4. Common cement in sed. rocks (illite, smectite)
  - 5. **Control rheology & fluid flow** (sedimentary aquifers & hydrocarbons sedimentary basins)
- Structure of clay minerals: sheet of clay minerals are made of T & O layers that joined to form 2 layers clays (T-O) or 3-layer clays (T-O-T) or mixture
  - T-center occupied by Si & to certain degree Al
  - O-layer may be *dioctahedral* or *trioctahedral*:
     O layers have trivalent (AI) or divalent (Mg) ions
    - Brucite: In order of divalent cations all positions have to be filled in the forming of trioctahedral
    - 2. **Gibbsite**: In the former of dioctahedral only 2 sites have to be filled, with trivalent cation Octahedral layer



Kaolinite Each structural unit consists of a gibbsite layer & T-layer. only 2 out of 3 O-sites in the O-layer are occupied

2:1,O-layer is a gibbsite layer. Substitution of Mg for Al in the O-layer is charge balanced by the addition of Na or Ca cations


 2 layers clays permit limited substitution for their Si, & Al in the T-sites; while the 3 layers types are characterized by extensive substitution, & This substitution has to be counterbalanced by the substitution of the interlayer cations




*CEC: Cation exchange capacity in meq/100g clay

خاصبة ال expansion عند تعرض clay للماء السبب بها ال expansion تتصل بمركب الماء القطبي فتزداد ال interlayer space وسيحدث landslides, liquefaction, Adsorption, & cation exchange **CATION EXCHANGE** 

#### الفرق بين ال Absorption و Adsorption هو ان ال Absorption يحدث على سطح المعدن اما ال Adsorption يحدث داخل المعدن





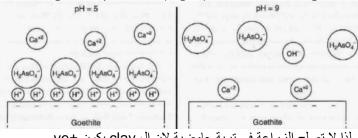
to the surface drawn into the bulk of the phase.

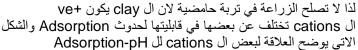
- **Cation exchange**: type of adsorption characterized by attraction of cations to particle surface
- Adsorption is controlled:
  - 1. Chemical attraction: forms crystal edge bonds
  - 2. Electrostatic attraction: dissolved phase
  - attracted to charged particle3. Physical attraction: Weakest, VDWs force

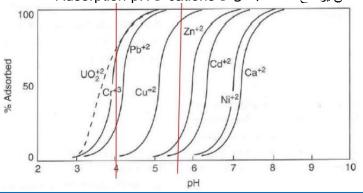
#### • Surface Charge Causes:

- 1. Substitution in the T- & O-layers
- 2. Defects or imperfections in the crystal structure
- 3. Unsatisfied or broken bonds at corners & edges
- The -ve charge in 3 layers clays (2:1) is developed mainly from the first 2 causes
- Role of broken bonds can be demonstrated in:
  - Decreasing adsorption by decreasing pH
     Increasing CEC by decreasing grain size
- Clay mineral can exchange cation with aqueous phase: This have a significant impact on the distribution of metals in the environment
- Cation exchange capacity (CEC): varies as a function of pH, particle size, & types of ions

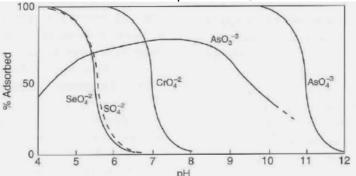
CEC is normally measured in meq/100g


Surface	e Area of	Illite with 2600k	g/m³ density	Surface Area is
Length	cubes	Area of cube [m ² ]	Surface area [m²/g]	inversely related to the size of
1m	1	L*6 = 6	2.3x10 ⁻⁶	particles &
1cm	10 ⁶	6x10 ⁻⁴	2.3x10 ⁻⁴	directly related to
1µm	10 ¹⁸	6x10 ⁻¹²	2.31	the cation
0.1µm	10 ²¹	6x10 ⁻¹⁴	23.1	exchange &
0.01µm	10 ²⁴	6x10 ⁻¹⁶	231	absorptions


IEP & PZC (effect of pH & absorption)


- isoelectric point (IEP): n pH at which the surface charge of a particles 0, a solution in which H & OH sorb to the mineral surface
- point of zero charge(PZC): In natural solutions with range of ions

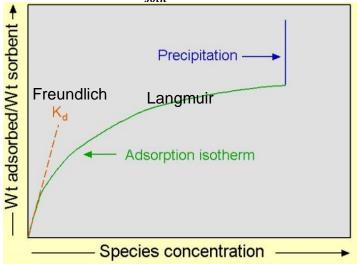
	range er lene					
pH-Value	Surface charge					
< IEP or PZC	+ve (dominated by H) & the partic	le attract	anions			
> IEP or PZC	-ve (dominated by OH) & the particle attract cation					
pH< isoelectr	The mineral is an anion exchanger					
pH> isoelectr	The mineral sorbs cations					
		IEP	PZC			
Smectite	Ca _{0.17} (AI,Fe ³⁺ ) ₂ (Si _{3.66} AI _{0.34} )O ₁₀ (OH) ₂	1-3	2-3			
Kaolin	$AI_2(Si_2)O_5(OH)_4$	4	2-4			
Humus	$C_{20}H_{20}O_{15}N$	2-3	2-3			
Allophane	Si ₃ Al ₄ O ₈ (OH) ₈ .8H ₂ O	5-6	5			
Hematite	Fe ₂ O ₃	6-8	4-7			
Goethite	FeOOH	6-7	6-7			
Gibbsite	AI(OH) ₃	9	10			

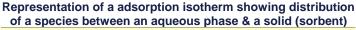

For example if the pH-value for goethite is 5 they attract +ve charge, & if pH is >7 (e.g. 9) attract -ve charge

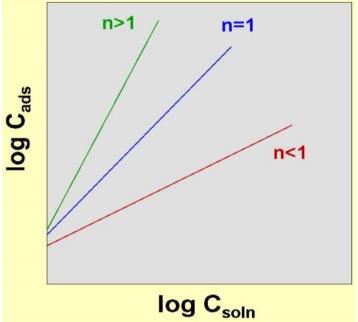




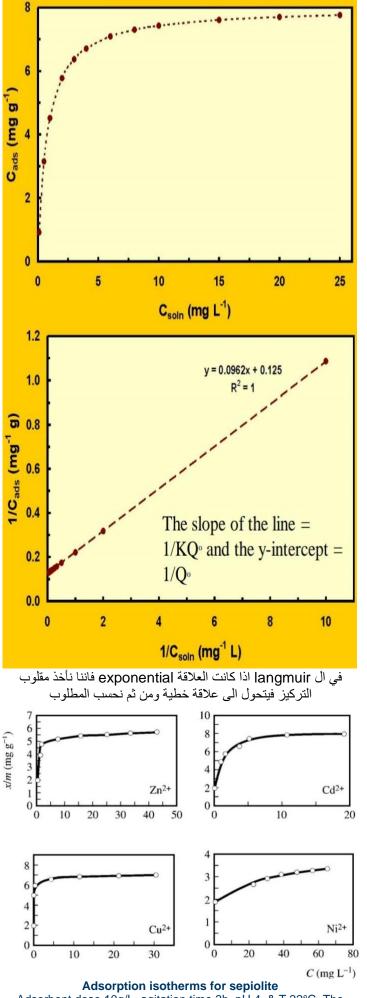



ونفس الامر بالنسبة الى حدوث Adsorption لل Anion لكن بالعكس





- **Batch method:** used to determine ion exchange properties, Adsorption isotherm represent partition of particular species in aqueous-solid phase
- There are 2 models of bathc method, Freundlich (linear relation), & langmuir (exponential relation) *Freundlich Equation*:  $C_{ads} = KC^n_{slon}$

 $LogC_{ads} = LogK + nLogC_{soln}$ 

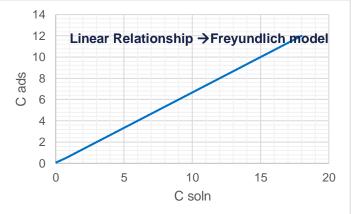

 $Lanmuir = \frac{Q^{\circ}KC_{soln}}{1 + KC_{soln}}, Q: Max \ soptive \ capacity$ 



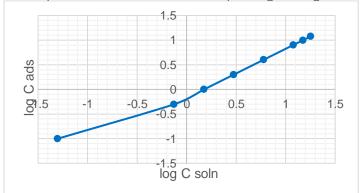


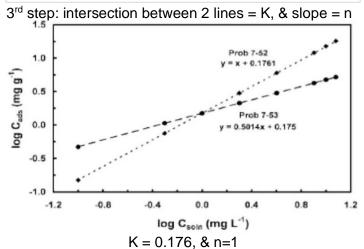


Plot of log[C]_{adsorbed on a particle (Cads)} versus log[C]_{in water (Csoln)}. Linear plots indicate that the partitioning can be represented by a Freundlich isotherm. The slope of the line gives the exponent (n), & the intercept gives the value for log K.




Adsorbent dose 10g/L, agitation time 3h, pH 4, & T 22°C. The Langmuir equation provided the best fit to adsorption isotherms


**EXAMPLE** a betch experiment was done to investigate the adsorption of Ni²⁺ onto kaolin. The experiment was done at 20°C & 5 pH, & agitation time was 3hr, the following data were obtained, calculate K & n


ionowing duta	WOIG Obtaine		
C _{soln} [mg/L]	C _{ads} [mg/g]	C _{soln} [mg/L]	C _{ads} [mg/g]
0.10	0.05	4.00	6.00
0.50	0.75	8.00	12.0
1.00	1.50	10.0	15.0
2.00	3.00	12.0	18.0

1st stepe: plot Cads – C soln & determine the model



2nd step: to find n & K, we need to plot log_{Cads}-logC_{soln}





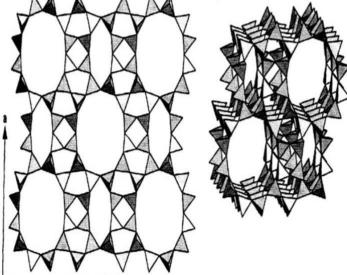
• Column test method: to determine ion exchange  $K_d = \frac{(C_i - C_f)}{C_f} x \frac{V}{M}$ 

**EXAMPLE** 10g montmorillonite are placed in a column & 100ml of solution, The initial solution had [Zn] 20mg/L & After passing through the column, the solution had a [Zn] 14.1mg/L, Calculate the  $K_{dZn}$ 

$$K_d = \frac{(C_i - C_f)}{C_f} \frac{V}{M} = \frac{20 - 14.1}{14.1} x \frac{100mL}{10g} = 4.18mL/g$$

**ENVIRONMENTALGEOCHEMISTRY** 

SHAAS HAMDAN


# ZEOLITES

M_xD_y[Al_{x+2y}Si_{n-(x+2y)}O_{2n}].mH₂O M= Na, K, or other monvalent

D= Mg, Ca, Sr, Ba, or divalent M & D are the extra-framework exchangable cations The ratio (Al+Si)/O always = 1:2 Al³⁺ substitution for Si⁴⁺ provides the excess charge

 Zeolite: crystalline substance with framework of linked tetrahedra consisting of 4O atoms, contains cavities (channels & cages) that occupied by H₂O & extra-framework cations that are exchangable

& extra-framework cations that are exchangable					exchangable
Mineral	Si:(S	i+Al)	Voidspace	F	ree perture size
Erionite	0.75	0.78	0.36	3.6Å >	< 5.2Å, 8-ring ⊥ (001)
Mordenite	0.80·	0.85	0.26	2.9Å	7.0 Å, 12-ring   (001) x5.7Å, 8-ring II (010)
Clinoptilolite	0.74-0.84 0.34		0.34	3.5Åx 3.	7.9Å, 10-rings  (001) 0Åx4.4Å, 8-rings
Phillipsite	0.54	0.75	0.30	2.8Åx	4.4Å, 8-rings    (100) 4.8Å, 8-rings    (010) 3Å,8-rings    (001)
Chabazite	0.59	0.80	0.48	3.7	7Å x 4.1Å, 8-rings
Si/Al ratio			High		Low
Selective for	or	Μ	onovalent catio	ons	Divalent cations
Charge Fewer negative ch		arges	More negative charges		
Favorite			Large monovalent cations		Smaller divalent ions
		LI<	<u>Na<nh₄<k<r< u="">l</nh₄<k<r<></u>	o <cs< th=""><th>Mg &lt; Ca &lt; Sr &lt; Ba</th></cs<>	Mg < Ca < Sr < Ba
					A AA

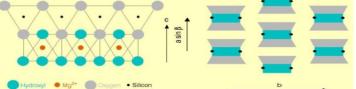


mordenite structure down c-axis & obliquely down the c-axis There are 2 sets of channels, one consisting of 12-membered rings & the other 8-rings (count T around large & small channels)

- Uses:
  - 1. Treatment nuclear wastewater

► b

- 2. Treatment of muncipal & industrial wastwaters
- 3. Remediation of acid mine drainage


4. Soil remediation contaminated with heavy metal

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Mineral	Formula	CEC
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Erionite	Na ₂ K ₄ Mg ₂ Ca ₃ (Al ₈ Si ₂₈ ) ₂ O ₁₄₄ ·56H ₂ O	280
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mordenite	Na ₃ KCa ₂ (Al ₈ Si ₄₀ )O ₉₆ ·8H ₂ O	220
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Clinoptilolite	(Na,K) ₆ (Al ₆ Si ₃₀ )O ₇₂ ·20H ₂ O	220
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Phillipsite	K ₂ (Ca,Na ₂ ) ₂ (Al ₆ Si ₁₀ )O ₃₂ ·12H ₂ O	450
Faujasite         Na ₂₀ Ca ₁₂ Mg ₈ (Al ₆₀ Si ₁₃₂ O ₃₈₄ ).235H ₂ O         360           Ferrierite         (Na,K) ₂ Mg ₄ Ca(Al ₆ Si ₃₀ O ₇₂ ) ₂ .40H ₂ O         230	Chabazite	Ca ₂ (Al ₄ Si ₈ )O ₂₄ ·12H ₂ O	390
Ferrierite $(Na,K)_2Mg_4Ca(Al_6Si_{30}O_{72})_2.40H_2O$ 230	Analcime	Na ₁₆ (Al ₁₆ Si ₃₂ O ₉₆ ).16H ₂ O	450
	Faujasite	Na ₂₀ Ca ₁₂ Mg ₈ (Al ₆₀ Si ₁₃₂ O ₃₈₄ ).235H ₂ O	360
Heulandite $(Na K)Ca_{(Al_{0}Si_{0}, O_{2})} 24H_{0}O = 320$	Ferrierite	(Na,K) ₂ Mg ₄ Ca(Al ₆ Si ₃₀ O ₇₂ ) ₂ .40H ₂ O	230
	Heulandite	(Na,K)Ca ₄ (Al ₉ Si ₂₇ O ₇₂ ).24H ₂ O	320
Laumontite $Ca_4(Al_8Si_{16}O_{48}).16H_2O$ 430	Laumontite	Ca ₄ (Al ₈ Si ₁₆ O ₄₈ ).16H ₂ O	430
Natrolite Na ₁₆ (Al ₁₆ Si ₂₄ O ₈₀ ).16H ₂ O 530	Natrolite	Na ₁₆ (Al ₁₆ Si ₂₄ O ₈₀ ).16H ₂ O	530
Wairakite $Ca_8(AI_{16}Si_{32}O_{96}).16H_2O$ 460	Wairakite	Ca ₈ (Al ₁₆ Si ₃₂ O ₉₆ ).16H ₂ O	460

CEC: Theoretical cation-exchange capacity for selected zeolite minerals (in meq/100 g)

# **ASBESTOS MINERALS**

- Asbestos: any mineral separate into long flexible
- Resistance to heat, friction, & acid condition
- Serpentines (chrysotile), & Amphiboles (amosite, crocidolite, , anthophylite, actinolite, & tremolite)



#### Crystal structure of chrysotile

1:1 layer consisting of T-layer & O-layer in which Mg²⁺ are surrounded by 4OH⁻ & 2O **Clinoamphibole Structure** The gray areas are the T-chains, the cyanide area is the O-layer, & the filled circles is M4 position

Mineral	Sys	Formula	Н	G
Chrysotile	Mono	$Mg_3[Si_2O_5](OH)_4$	2.5	<2.55
Actinolite	Mono	Ca ₂ (Mg,Fe ²⁺ ) ₅ [Si ₈ O ₂₂ ](OH) ₂	5-6	3.0-3.2
Amosite	Mono	(Fe ²⁺ ,Mg) ₇ [Si ₈ O ₂₂ ](OH) ₂	5.8	3.1-3.3
Anthophyllit	Ortho	(Mg,Fe ²⁺ ) ₇ [Si ₈ O ₂₂ ](OH) ₂	5.8	2.9-3.1
Crocidolite	Mono	Na ₂ Fe ³⁺ ₂ (Fe,Mg) ₃ Si ₈ O ₂₂ (OH) ₂	5	3.2-3.5
Tremolite	Mono	Ca ₂ Mg ₅ [Si ₈ O ₂₂ ](OH) ₂	5-6	2.9-3.2
• Uses (95% used is chrysotile & 5% amphibole)				

chrysotile

- has a short residence time in the lung
   contains little (or no) ferrous iron
   fireproof clothing, glove, face masks, stage curtains, & pipe insulation
   has relatively longer residence time in lung
  - contain significant amounts of ferrous iron
    - exposure to amphibole more significant than to chrysotile fibers in terms of cell damage
- Health effects of Asbestos exposure: Asbestosis, Mesothelioma, & Lung cancer
- Mechanisms that responsible for cell damage by asbestos minerals: the body responds to the introduction of a foreign material by attacking the material with phagocytic cells that attempt to engulf & ultimately remove the foreign material. These cells produce highly reactive compounds (e.g. H₂O₂ & OH-radicals) that kill foreign microorganisms.
  - The production of these short-lived O-species promoted by the presence of ferrous iron
  - The increased production of active O-species increases inflamation in area of foreign material & cause DNA damage in surrounding cells
     H₂O₂ + Fe²⁺ → 2OH⁻ + Fe³⁺
- Factors of impact of asbestos fiber on the lung:
   Persistence in the lung
  - 2. The presence of ferrous iron in the mineral
- Respiratory diseases associated with exposure to silica dust
  - Silicosis leads to scarring of the lung tissue & a diminution in respiratory capacit
  - 2. Silicotuberculosis is due to a synergistic effect of silica, & M
  - 3. Lung cancer
  - 4. Tuberculosis promotes growth of the pathogen

Pressure (GPa)

#### **MINERAL-ORGANISMS INTERACTION**

Classification of microorganisms based on the cell type			
Procaryotes	no nucleus, all types of bacteria		
Eucaryotes	well defined nucleus Include fungi, protozoa, & algae		
Classification of microorganism based on energysource			
Photolithotrophs	Use light as source of energy, & inorganic compound as electron donors & carbon sources (e.h. plants)		
Photoorganotroph	Use light as source of energy, & inorganic compound as electron donors & carbon sources		
Chemolithotroph	Utilize oxidation of inorganic components (Fe ²⁺ , Mn ²⁺ , S ²⁻ ) as their energy source & CO ₂ as the source of carbon		
Chemoorganotroph	Use organic compounds as both a source of energy & carbon		

- Microorganisms' role in dissolution & precipitation of minerals (Mechanisms)
  - 1. Dissolution & release ions by acid & complexing molecule by auto- or hetero-trophic organisms
  - 2. REDOX reactions promoted by microorganisms
  - 3. Changes in Eh or pH due to the uptake & release of different compounds or ions
- Examples
  - > oxidation of organic matter producing carbonic acid: (CH₂O)n → CO₂ + H₂O + H₂CO₃
  - Production of organic acids which act as ligands
     & can form complex metal ions
  - Oxidation, in aerobic environments, of Fe²⁺ to Fe³⁺ leading to precipitation of oxyhydroxides
- Factors that play a role in the rate at which a mineral dissolves
  - 1. The zeta potential which affects the ability of a surface to attract charged species
  - 2. The size of the particle (surface/volume ratio)
  - 3. The atomic nature of the mineral surface with the presence of dislocations & defect structures increasing the reaction rate
  - 4. The presence of other ions in solution which may compete for the charged sites on the mineral surface
  - 5. The attachment of microorganisms which may act as organic ligands to the mineral's surface.