PETROLOGY LAB

SHAAS N HAMDAN

Index

Igneous rock classification (Review)
Igneous rock Textures & Structures4
Igneous rocks classification7
Felsic rocks: Granite va. Rhyolite11
Felsic rocks: Syenite vs. Trachyte12
Mafic rocks: Gappro vs. Basalt13
Intermediate rocks: Diorite vs. Andisite15
Ultramafic rock: Peridotite16
Undersaturated: Syenite vs. Basanites17
Conglomerates & Breccias18
Sandstones, Greywackes, & Mudstones19
Limestones & Dolostones (Carbonates)20
Carbonate rocks classification21
Metamorphic Rocks23
Classification of Metamorphic Rocks24
Type of Metamorphism24
Contact Metamorphic Rocks25
Regional Metamorphic Rocks25
MidTerm Exam & Solutions26

Sources

ALEX STRECKEISEN SITE

DR. N. YASEEN, LECTURES

DR. N. YASEEN, SLIDES

K. HEFFERAN, J. O'BRIEN, EARTH MATERIALS, 1ST ED

IGNEOUS ROCK CLASSIFICATION (REVIEW) INTRODUCTION FROM EARTH MATERIALS

Classification	Disruption	Composition
Ultramafic	Dark & greenish	Olivine + pyroxene ± amphibole
Mafic	Dark	Pyroxene ± amphibole ± olivine ± biotite
Intermediate	Grayish to salt, pepper	Plagioclase, amphibole ± biotite ± quartz
Felsic	Light, red	K-feldspar, quartz ± biotite ± muscovite

	Plutonic/Granitic	Volcanic / Basaltic
Occurrence	Intrusive	Extrusive
Produced by	Magma	Lava, volcanic debris
Solidifies	within Earth	at surface
Cools	slowly	rapidly
	large crystals	small crystal (Apha-
Producing	(phaneritic)	nitic), noncrystalline
Ultramafic	Peridotite	Comatiite
Mafic	Gabbro	Basalt
Intermediate	Diorite	Andesite
Felsic	Granodiorite,	Dacite, Rhyolite
	Granite	

Texture	very dark (ultramafic)	Dark-colored (mafic)	gray (intermediate) to salt & pepper
SiO2	< 45%VolSiO₂ (ultrabasic)	45% - 52%VolSiO₂ (basic)	50 – 65%vol SiO₂
Plutonic	Peridotite, or Pyroxenite	Gabbro, in lower crust of ocean basin	Diorit
Volcanic	Comatite (rare)	Basalt, common volcanic, encompa- ssing upper kilometers of ocean crust	Andesite, common around Pacific Ring of Fire
Minerals	Rich in Pyroxene, olivine, ± amphibole ± plagioclase	Rich in plagioclase, pyroxene, olivine	Rich in hornblende, pyroxene, & plagioclase

Texture	Light-colored (felsic) rocks	Light-colored (felsic) rocks
SiO ₂	≈ 65%vol	> 65%vol (silicic or acidic)
Plutonic	Granodiorite, between granite & diorite	Granite, occur in continental crust
Volcanic	Dacite, occurs around the Pacific rim	Rhyolit, erupts in thick, continental crust
Minerals	Plagioclase, alkali feldspar, quartz, & small	quartz, alkali feldspar, & small amounts of plagioclase
winterais	amounts of hornblende & biotite	& biotit

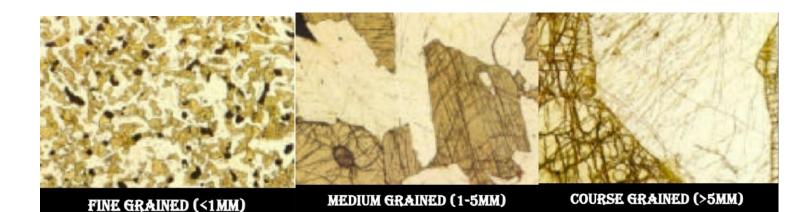
Texture	Rock	Color	Notes
Vesicular	Pumice	Light-colored	Lightweight rock rich in gas holes (vesicles)
vesicular	Scoria	Dark-Colored	Lightweight rock rich in gas holes (vesicles)
Glassy	Obsidian	Black to Reddish	Glassy luster & Conchoidal fracture
Duroclastia	Volcanic tuff		Fine grain ash to sand size volcanic fragments
Pyroclastic	Volcanic Breccia		Coarse grain gravel & larger size volcanic fragments

Igneous rock Textures & Structures

SUBHEDRAL

ANHEDRAL

PLAGIOCLASE IN AN ANDESITE WITH HYPOCRYSTALLINE GROUNDMASS



PLAGIOCLASE IN AN ANDESITE WITH HYPOCRYSTALLINE GROUNDMASS

- Shapes of individual crystals
 - 1. Euhedral: A crystal completely bounded by its own faces
 - 2. **Subhedral**: some crystal bounded by its own faces & in surfaces developed through mutual interference of adjacent crystals
 - 3. Anhedral: A crystal not bounded by its own crystal faces
- Rock textures defined by single crystal shape
 - 1. Hypidiomorphic: euhedral & subhedral crystal
 - 2. Idiomorphic: all crystals are euhedral (absent in natural samples)
 - 3. Allotriomorphic: entirely anhedral crystals
- Degree of crystallinity
 - 1. Holohyaline (Vitreous): completely glassy without crystals
 - 2. Holocrystalline: rocks composed entirely of crystals
 - 3. Hypocrystalline: rocks composed of crystal & glass
 - Glass is color less under PPL, & Blake Under XPL
- Phenocrysts: Large crystals stands on a finer-grained groundmass
- Rock textures defined by grain size

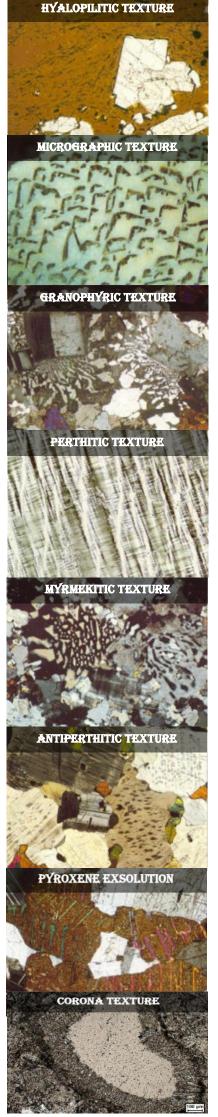
Equicrystalline		Porphyritic
Aphanitic	Phaneritic	
Microcrystalline	Fine grained < 1mm	Porphyritic hyaline
Cryptocrystalline	Medium grained 1-5 mm	Porphyritic aphanitic
	Coarse grained 5-10 mm	Porphyritic phaneritic
	Pegmatitic > 10 mm	

- Aphanitic crystals are too small (You can't see it with naked eye)
- Phaneritic individual constituents visible to naked eye
- **Microcrystalline** crystals may distinguished with aid of microscope
- Cryptocrystalline mineral aggregate shown to be crystalline using scanning electron microscope or x-ray techniques but individual crystals not visible under the microscope.
- Groundmass fine grained matrix (Any material you fail to know because it's too small)

• Equigranular textures

Texture	Crystal
Allotriomorphic or xenomorphic texture	Most crystals anhedral
Hypidiomorphic texture	Most crystals subhedral
Panidiomorphic or idiomorphic texture	most crystals euhedral

• Inequigranular textures


Texture	Crystal
Porphyritic	Large crystal (phenocryst) in finer grain or glassy matrix (non بلورات كبيرة محاطة بارضية ناعمة (uniform grain size distribution
Serial	As several grain sizes are present, & the grain size is increas- ing in a certain direction.عندما يزداد حجم الحبيبات في اتجاه ما
Glomero- porphyritic (Microphyritic)	Phenocrysts occur in separated clusters (phenocrysts are forming aggregates) هو مثل Porphyritic ولكن تتشكل ال phenocrysts بمجموعات منفصلة
Poikilitic	a late crystals completely encloses grains of other minerals (Smaller crystals enclosed in larger crystals)هي معدن داخل معدن
Ophitic	Enclosure of plagioclase laths by larger augite in basalts & gabbros بلورات بلاجيوكليز صغيرة محاطة في داخل بلورة او غايت كبيرة the term <u>sub-ophitic</u> is used when the enclosure is partial
Interstitial or Intergranular	The later formed crystals fill in the spaces after the crystallized of early grains euhedral & subhedral بلورات تعبي الفراغات بين Cpx fills gaps between plagioclase, found In basalts
Graunular or granitic	The grain-size is more or less uniform with euhedral, subhedral, & anhedral grains

Directive textures as magma flow in form of convection currents, & some crystals (E.g feldspar) may well align themselves in flow direction
 Flow structures aren't found in extrusive rocks, & can be found in plutonic only where flow take the form of convection currents

Texture	Crystal
Trachytic	parallel to subparallel arrangement of feldspar laths, found in
texture	ترتيب متوازي للبلورات (بلورات الفلدسبار) volcanic rocks
Trachytoid	Parallel arrangement of minerals (not feldspar) in mafic rock
Hyalopilitic	هي ارضية ناعمة , The arrangement of microlites in glassy rocks
	يظهر عليها ترتيب متوازي للمعادن بداخلها

• **Intergrowth textures** when a crystal of one mineral completely embedded within a crystal of another mineral. The crystals concerned are anhedral but one or both may be skeletal, dendritic or radiate.

Texture	Crystal
Micrographic	Graphic intergrowth of quartz–K-feldspar (under microscope)
Granophyric	Graphic intergrowth of quartz & alkali feldspar, in granite
Myrmekite	Graphic intergrowths of plagioclase & quartz

- **Exsolution (intergrowth):** Result from separation of homogenous alkali feldspar into K- & Na-feldspar, include Perthite, microperthite, mesoperthite, cryptoperthite, & Antiperthitic
 - Similar exsolution textures can be found in gabbros & basalts between orthopyroxenes & clinopyroxenes

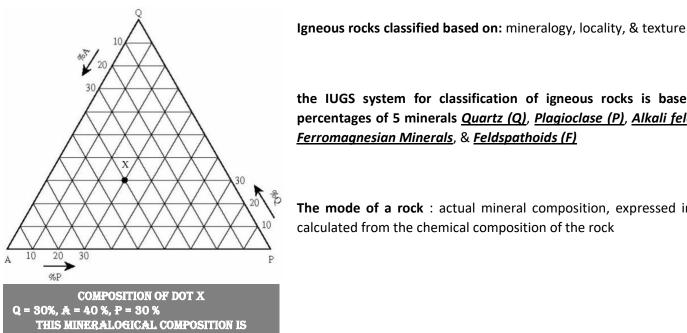
Texture	Crystal
Perthitic	Parallel streaks & blebs of albite within a host of orthoclase or
	microcline, found in granite
Antiperthitic	Parallel streaks & blebs of orthoclase or microcline within a
	host of albite. Found in syenites & in some granites
Pyroxene	blebs of Opx in a host of Cpx, In slowly cooled Mafic rocks
exsolution	(gabbro, norite, Basalt)

Texture	Crystal
Corona	early formed mineral surrounded by fine-grained reaction
texture	product, represent a reaction between the mineral & melt
Vesicular	Open cavities in volcanic rocks
Amygdaloidal	When the vesicles are filled with secondary minerals
Resorption	The refusion or dissolution of a mineral back into the melt.
texture	commonly have rounded corners
Sperulitic	Devitrification of glass gives rise to large radial aggregates of
	crystals (silica & alkali feldspar) in the case of glass

colour index of a rock & relative proportions of dark- to light-minerals

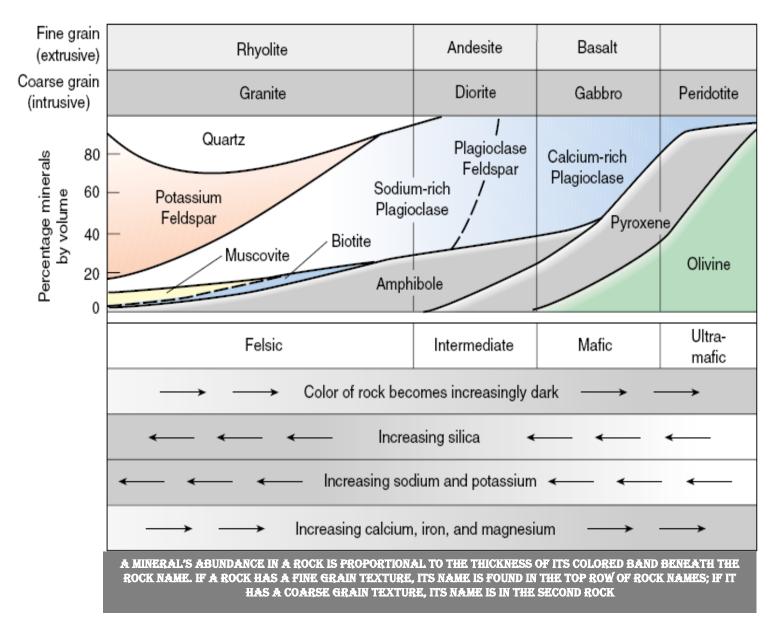
	Proportion of dark & light minerals	Eg
Melanocratic	>66%Dark-colored minerals	Mela-gappro
Mesocratic	66-33% Dark-colored minerals	Mela-gappro
Leucocratic	>33%Dark-colored minerals	Leuco-gapro

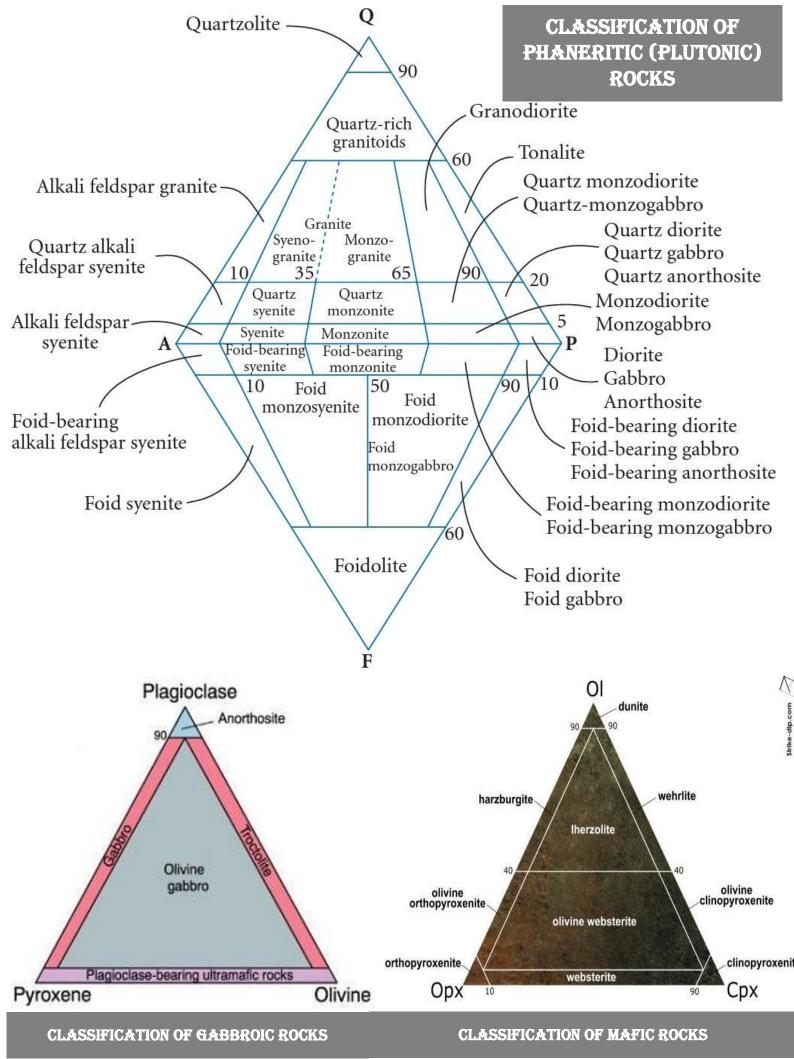
- Essential minerals necessary to the naming of rock but present in minor quantities (Eg. a crinanite contain a small amount of analcite)
- Accessory minerals are present in rocks in small amount (<1%), & ignored when naming the rock (such as opaque mineral in UM rocks)

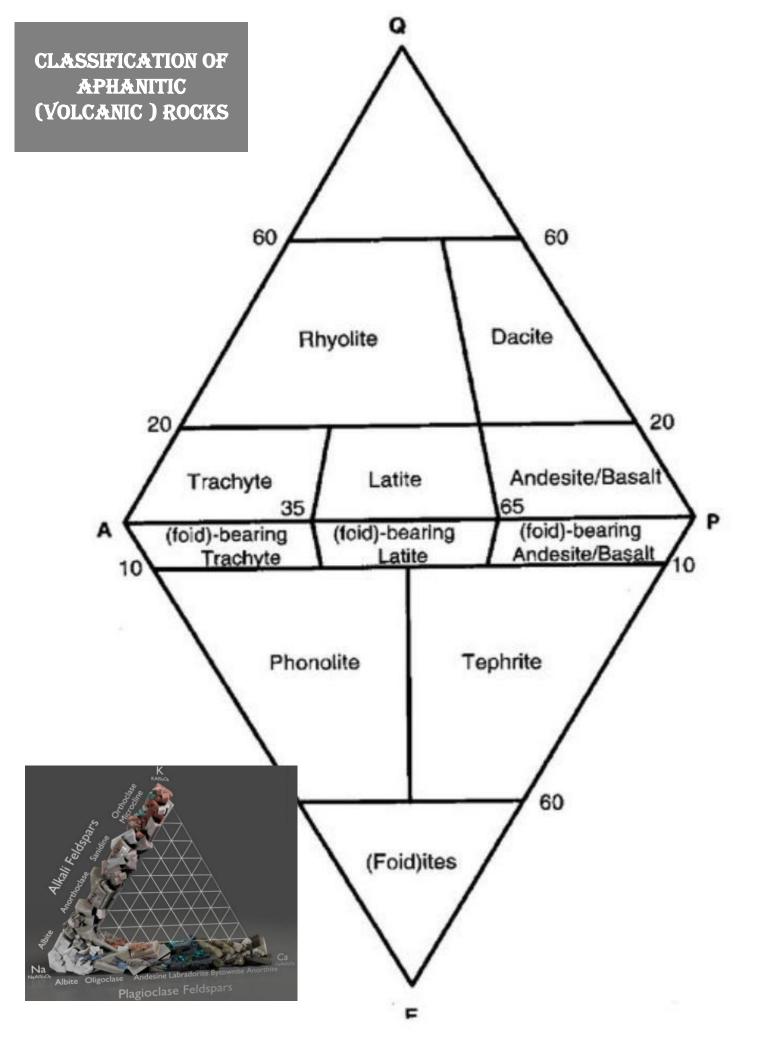

Zoning occur as mineral changes its composition in response to changes magma chemistry, led to change in the optical properties

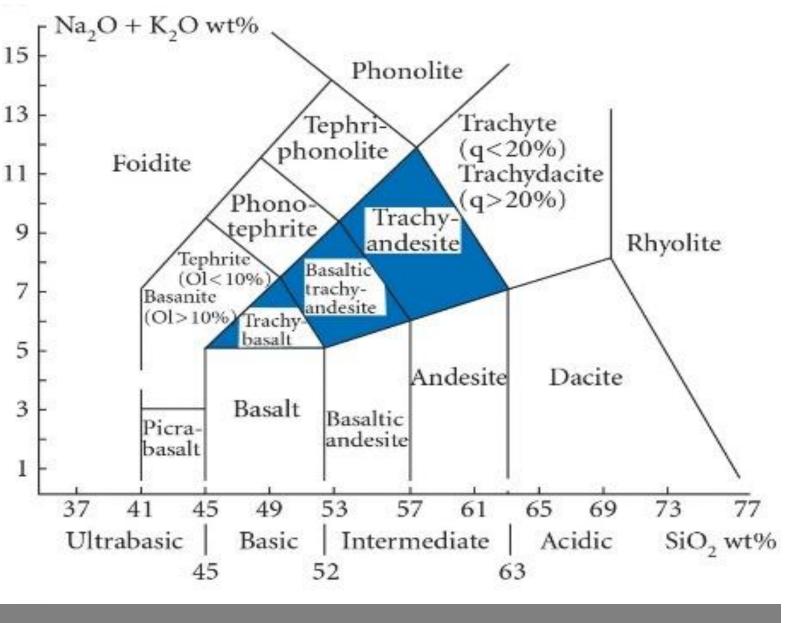
• Many minerals zoned during growth due to solid-solution series, & equilibrium crystallisation is exceedingly rare

Texture	Crystal
Normal	As crystal zoned from the high T endmember towards the low
zoning	Eg. plagioclase zoned from Ca-rich to Na-rich compositions
Reverse	As crystal zoned from the low T endmember towards the high
zoning	Eg. plagioclase zoned from Na-rich to Ca-rich compositions
Oscillatory	As the composition of the crystal switches from the high T to the
zoning	lower endmember a number of times during growth

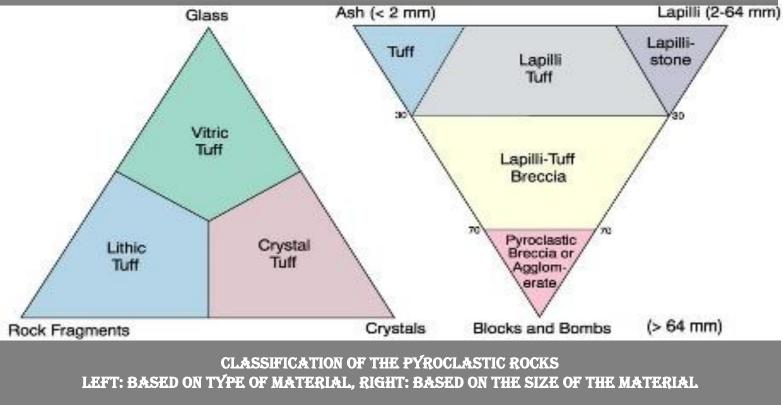

Igneous rocks classification

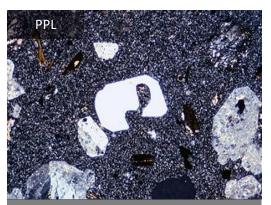


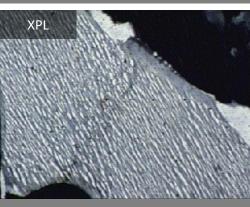

EQUIVALENT TO GRANITE


the IUGS system for classification of igneous rocks is based on the percentages of 5 minerals Quartz (Q), Plagioclase (P), Alkali feldspar (A), Ferromagnesian Minerals, & Feldspathoids (F)

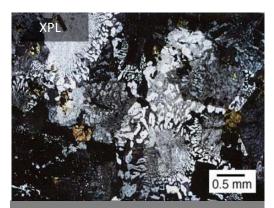
The mode of a rock : actual mineral composition, expressed in %vol, & calculated from the chemical composition of the rock






A CHEMICAL CLASSIFICATION OF VOLCANICS BASED ON TOTAL ALKALIS VS. SILICA

10 Shaas N Hamdan

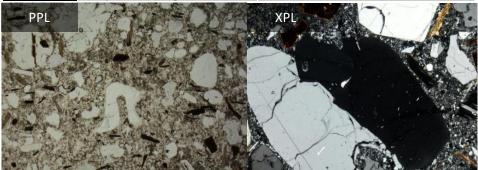

RHYOLITE CONTAINS PHENOCRYSTS OF QUARTZ, K-FELDSPAR (SANIDINE), PLAGIOCLASE, & BIOTITEIN

PERTHITETEXTURE IN MICROCLINE

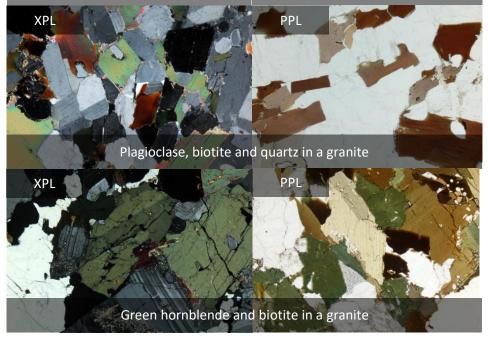
PERTHITETEXTURE IN MICROCLINE

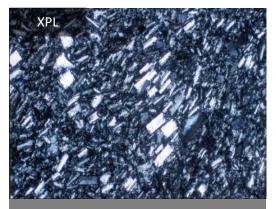
MICROGRAPHIC TEXTURE (QUARTZ + K-FELDSPAR) 11 Shaas N Hamdan

Felsic rocks: Plutonic Granite & volcanic equivalents Rhyolite


Mineralogy:

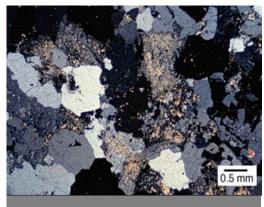
- Felsic minerals: 20%quarzt, 40-50%alkali-feldspar, & some plagioclase
- <u>mafic minerals:</u>Biotit ± hornblend
- <u>Accessory minerals:</u> muscovite, Magnetite, illmenite, zircon, & apatite
- <u>Alteration product</u>: chloritization, sericitization


Textural


• Perthitic, antiperthitic, micrographic, myrmekitic, poikilitic & others

Rock	Texture	Mineralogy
Rhyolite	Porphyritic Allotriomorphic Holocrystaline	Phenocrysts of quartz & feldspar (sanidine) in a felsic groundmass & Biotite commonly found as accessory mineral
Granite	Phaneritic texture Graphic intergrowth Hypidiomorphic Holocrystaline May be Twining in Pl	Composed mainly of quartz & feldspar with minor amounts of mica, & amphiboles

Quartz & plagioclase crystal in a Rhyolite with felsic groundmass The Brown is biotite Quartz & plagioclase crystal in a Rhyolite with felsic groundmass The Brown is biotite



TRACHYTIC TEXTURE

CROSS-HATCHED ('TARTAN) TWINNING IN MICROCLINE

SERICITIC ALTERATION

TRACHYTIC TEXTURE

Felsic rocks: Plutonic Syenite & volcanic equivalents Trachyte

Mineralogy

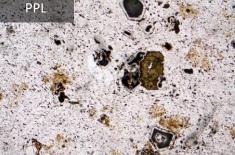
These rocks same as granite & rhyolite but rich in alkali feldspar (usually orthoclase) rether than quartz (<5%), & Plagioclase feldspars may be present in small quantities (<10%), & may be contain feldspathoid rether than quartz

Textural features: similar to granite

Rock	Mineralogy
Syenite	• Quartz <5%, plagioclase<10%, orthoclase (alkali feldspar)
	• Ferromagnesian: hornblende amphibole, rarely pyroxene
	• Biotite is rare, because most Al is used in producing feldspar
	Accessory: Sphene, Zircon, & apatite
Trachyte	• Composed largely of alkali feldspar with minor amounts of
	dark-colored mineral(biotite,hornblende,pyroxene)
	• called latite if Na-plagioclase > the quantity of alkali feldspar

Orhoclase, small plagioclase crystals (with polysynthetic twinning) & biotite (brown) in syenite

Orhoclase (with sericite alteration), apatite (colorless, high relief) & amphibole crystals in Syenite


Leucite crystal (with plagioclase inclusions) in a Trachyte

Sanidine and Leucite crystals in a Trachyte

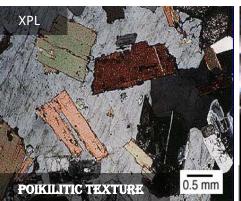
Sanidine, pyroxene & rounded leucite crystals in a Trachyte

Hauyne crystal (dark) & pyroxene (green) in a foid-bearing trachyte

OSCILLATORY & SECTOR-ZONED, INCLUSION-BEARING PYROXENE -XPL ..

Mafic rocks: Plutonic Gappro & volcanic equivalents Basalt

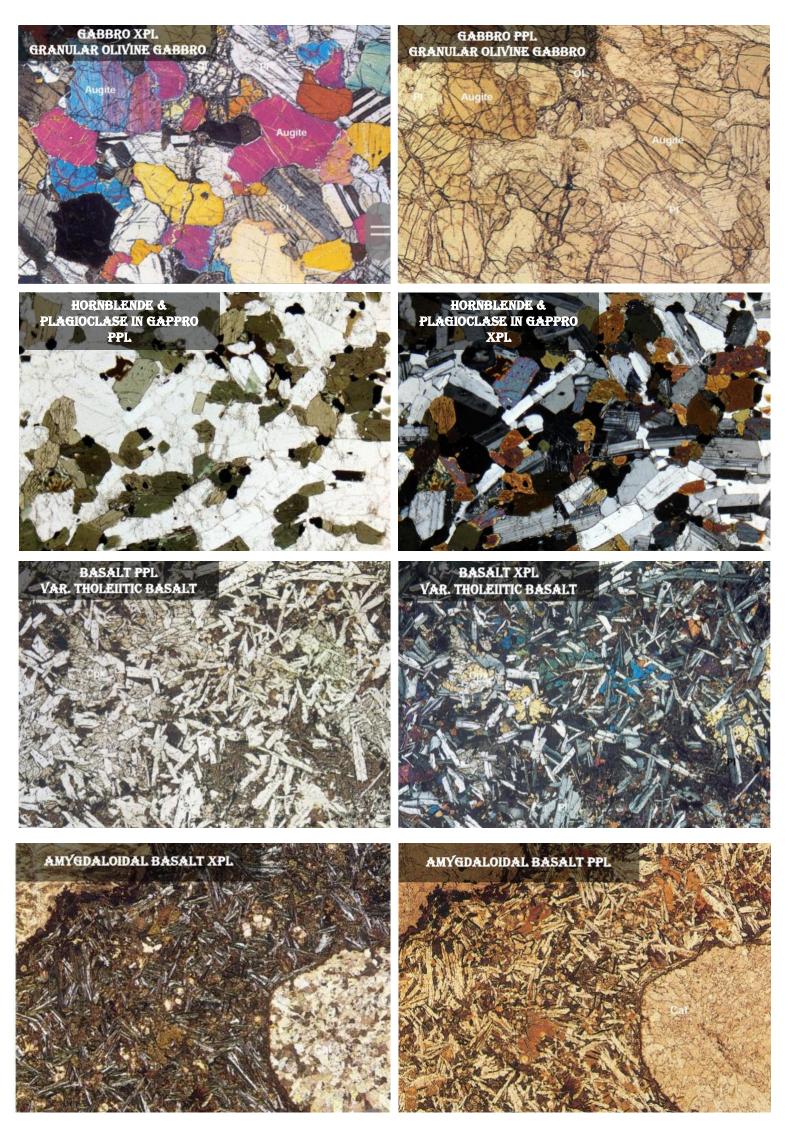
Gabbros, diorites & their volcanic equivalents (basalts & andesites) are differ from granitoids in:


- 1. rich in ferromagnesian minerals (a higher color index than granites)
- 2. have higher content of plagioclase (> 60%) compared to K-feldspar

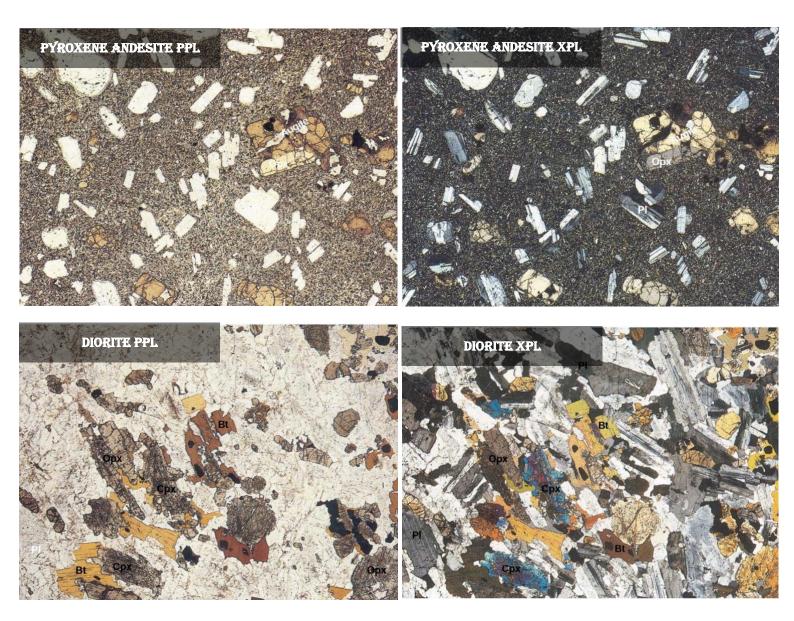
Diorites & gabbros differ from each other by the plagioclase continent

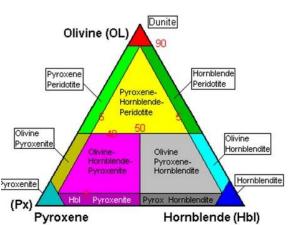
Minerals:

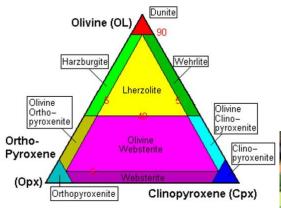
- 1. Plagioclase [NaAlSi₃O₈-CaAl₂Si₂O₈]
 - carlsbad, polysynthetic Twining , lamellae
 - plagioclases ranging from labradorite to anorthite (An >50%)
- 2. <u>Pyroxene [OPX (Fe, Mg)₂Si₂O₆, CPX (Ca, Mg, Fe)₂Si₂O₆]</u>
 - the second abundant (20-30%)
 - commonly pale brown (beige) colored, Opx 1st order interfernse color & Cpx 3rd Order interfernse color
 - relief is moderate compared to the low relief plagioclases
 - Cpx (augite) occur in tabular euhedral to subhedral, as zoned grains (in basalt), & show simple or polysynthetic twins
- 3. Olivines [Mg22SiO44-Fe22SiO44]
 - is the **third component** in abundance (10%)
 - colorless (white), lacks cleavage, & common as phenocrysts
 - olivine surrounded by pyroxenes forming Corona texture
- Amphiboles [K(NaCa)₂(Ca,Fe,Mg)₅(Al,Si)₈O₂₂(OH)₂]
 - hornblende (brown & green) with pleochroism & the cleavage
- 5. Biotite [K(Mg,Fe)₃(Si₄O₁₀(OH)₄]
- 6. <u>Opaque [magnetite Fe₃O₄, ilmenite FeTiO₃]</u> 3 8%
- 7. May be contain *amounts of quartz or feldspathoids*
- 8. Variable amounts of *alkali feldspars (KalSi₃O₈)* are also present



POIKILITIC TEXTURE : PLAGIOCLASE CHADACRYSTS ENCLOSED BY AUGITE -XPL

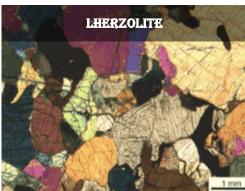


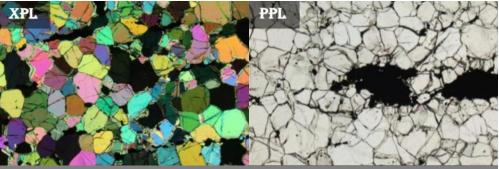

OPHITIC: SINGLE PYROXENE ENVOYE SEVERAL WELL-DEVELOPED PLAGIOCLASE LATHS

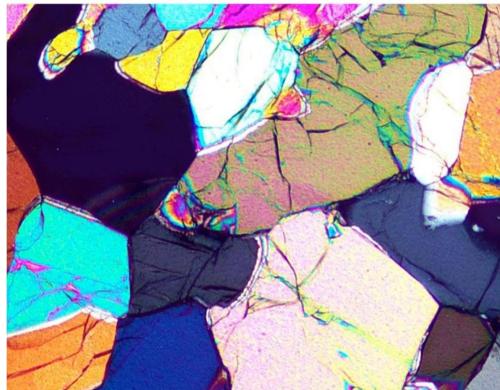


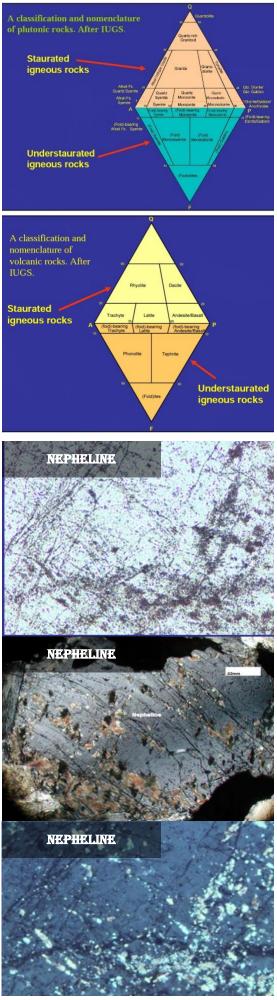
Intermediate rocks: Plutonic diorite & volcanic equivalents Andisite

- Minerals: such as mafic rocks
 - Plagioclase [NaAlSi₃O₈-CaAl₂Si₂O₈] An < 50%
 - the plagioclase is of andesine variety (An=30-50%)
 - 2. <u>Pyroxene [OPX (Fe, Mg)₂Si₂O₆, CPX (Ca, Mg, Fe)₂Si₂O₆] (20-30%)</u>
 - 3. Olivines [Mg22SiO44-Fe22SiO44] rare in diorites & andesites
 - olivine surrounded by pyroxenes forming the Corona texture
 - 4. <u>Amphiboles [K(NaCa)₂(Ca,Fe,Mg)₅(Al,Si)₈O₂₂(OH)₂]</u> hornblende
 - common in intermediate rocks (andesite & diorite)
 - amphiboles surrounding pyroxenes forming corona texture
 - 5. Biotite [K(Mg,Fe)₃(Si₄O₁₀(OH)₄] associated with amphibole
 - 6. <u>Opaque [magnetite Fe₃O₄, ilmenite FeTiO₃]</u> 3 8%
 - 7. May be contain *amounts of quartz or feldspathoids*
 - 8. Variable amounts of *alkali feldspars (KalSi₃O₈)* are also present



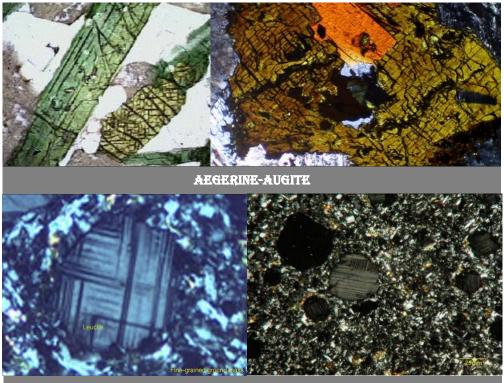



Ultramafic rocks: peridotite


- UM: Rocks containing > 90% ferromagnesian minerals
- classified on the basis of dark minerals
- If the ferromagnesian minerals consist only of OI & Px, they are classified on the basis of their contents of OI, Opx (enstatite, hypersthene) & Cpx (augite)
- If hornblende is present the classification is based on the relative amounts of Ol, Px & Am
 - Rocks consisting of > 90%Ol are dunite
 - Rocks consisting of > 90%Px are pyroxeniteor
 - Rocks consisting of > 90%hornblende: hornblendite
- Serpentine: formed due to olivine altration, PPL: yellow or green
- Opaque minerals (magnitite & chromite): black: PPL

DUNITE, 90%OL, & 10% OTHER (PYROXENE OR HORNBLENDE)

Spinel Iherzolite

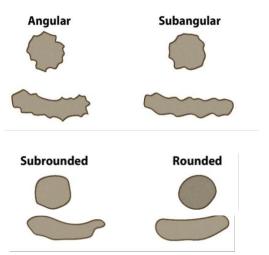


Saturated, Undersaturated, & Oversaturated

syenite, basanites

- <u>Undersaturated</u> rocks have feldspathoid rether than quartz
- <u>Saturated</u> has no quartz or feldspathoid (completely plagioclase)
- **Oversaturated** has quartz rether than feldspathoid
 - Feldspathoids such as leucite & nepheline
- how to differentiate Nepheline from quartz: <u>nepheline is uniaxial ve</u> but <u>quartz is uniaxial +ve</u>
- The igneous rocks with feldspathoids composition:
 - ➢ rich in alkalis (alkaline igneous), pyroxenes, & amphiboles
 - alkali pyroxene (aegirine: Found in felsic peralkaline plutonic rocks such as alkali granite, & syenite, Green), alkali amphibole (riebeckite)
 - > Leucite: euhedral, rounded, complex twinning, & low birefringence
- Aegirine-augite (alkali-pyroxene):
 - > Found in felsic peralkaline plutonic rocks (alkali granite, & syenite)
 - Green, undersaturated

LUCITE BASANITE


<u>Monzonite</u>

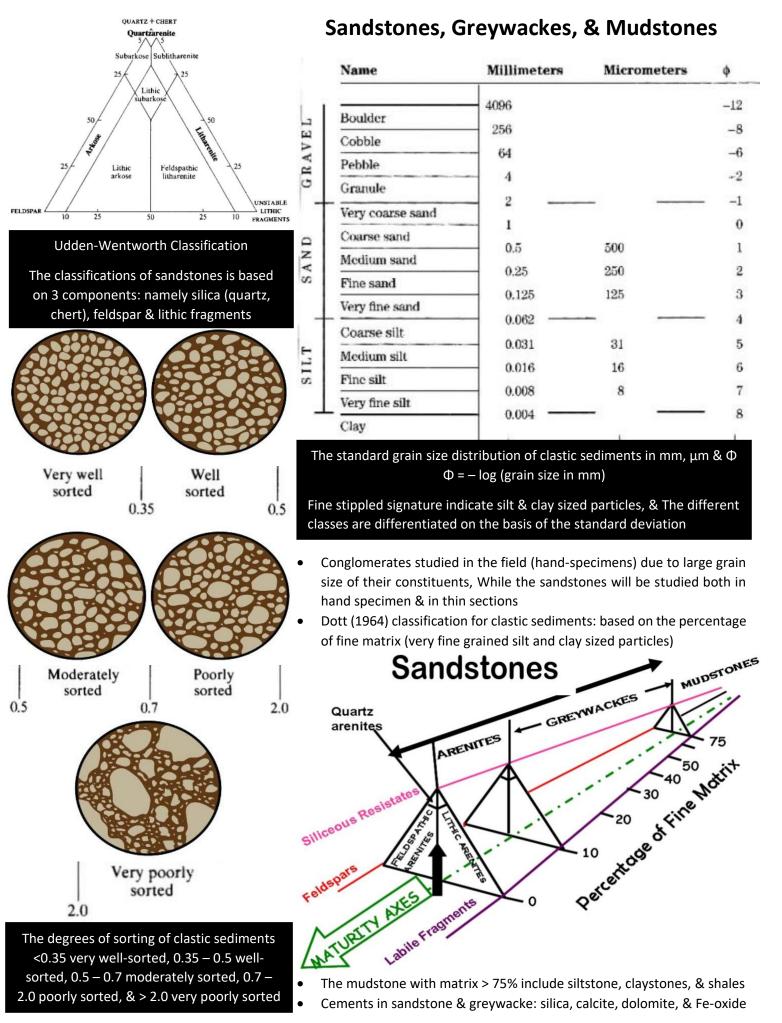
- holocrystalline, medium-to coarse-grained, hypidiomorphic
- biotite, phlogopite (green or brown); aegerine-augite; plagioclase,
 K-feldspar; opaques; carbonate; apatite; sphene

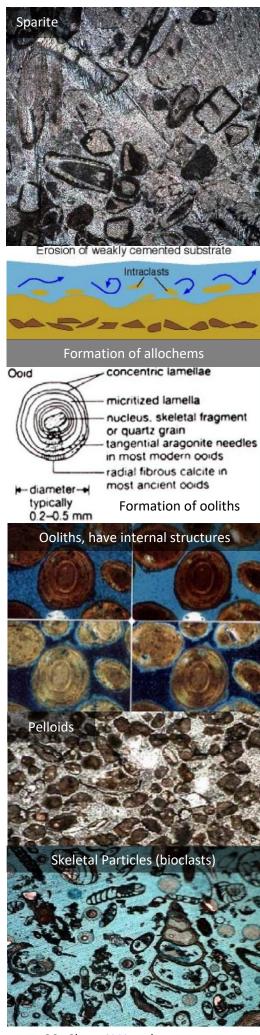
Basanites

> alkali basalts or feldspathoid bearing basalts)

<u>Nepheline-sodalite syenite</u> large crystals is aegirine-augite (yellow to green in PPL) & sodalite (black in XPL)

Conglomerates & Breccias

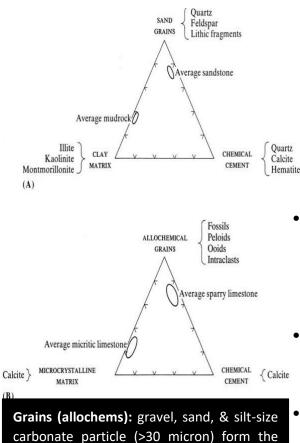

- **Terrigenous** "From the Earth": clastic sedimentary rocks, Composed of clasts of pre-existing rocks & minerals, & referred as:
 - Detrital: Formed by pre-existing rocks by Erosion or weathering
 - **Epiclastic**: derived from the surface
 - Silisiclastic: Because most terrigenous clastic rich in quartz & silicate
- Clast formed by physical weathering: eroded & transported by mass wasting, wind, water, or ice & deposited as **Discrete** (unconsolidated fragments that eventually lithified)
- Terrigeneous sediments divided into 3 distinct groups based on the basis of clast diameter: Conglomerate & breccia, Sandstone, & mudrock
- **Conglomerates (roundstone or Puddingstone)**: a lithified gravel made up of rounded to subrounded clasts whose diameters exceed 2 mm
 - are consolidated gravels (granules, pebbles, cobbles, & boulders)


	Conglomerates classification		
Oligomictic (monomictic, orthoquartzose)	Consists single type of fragment of resistant rocks (e.g granite, rhyolite), & minerals as quartz, & cherts		
Polymictic (Petromict)	Composed of fragment (clast) with different composition of metastable & unstable rocks (basalt, slate, & Limestone)		

- Breccias(sharpstone): lithified rubble made up of angular clasts > 2mm
- Most clasts on conglomerates & breccias are fragments of rocks & minerals produced by the disintegration of bedrock, which occur as coarser-grained fragments & finer-grained matrix filling the space between fragments
- Clasts are glued together by siliceous, calcareous, or ferruginous cement
- Three principal categories of clasts are Distinguished:
 - 1. Mineral fragments that occur as major component
 - 2. Mineral fragments that occur as accessory Mineral
 - 3. Fragments of rocks

•

2 Distinctive varieties of Conglomerates & breccias which defined on the basis of their texture		
Orthoconglomerates	consist of gravel-sized framework grains	
(True conglomerates)	Matrix (sand or finer) < 15%	
Paraconglomerate	Consist of > 15%matrix (sand & Mudrocks)	
	Matrix commonly 50%	
Extraformational V	s intraformational conglomerates & breccias	
Intraformational	Have interior (intrabasinal) source, so clasts have	
	same composition as matrix	
Extraformational	Derived from area outside the depositional basin so clasts have different composition from matrix	


Limestones & Dolostones (Carbonates)

- Make up 10-15% of sedimentary rocks (limestone more abundant)
- Importance of limestones (carbonate rocks) :
 - 1. Excellent indicators of depositional environments
 - 2. integral to study of past environments & earth history
 - 3. Important reservoirs for oil & gas
 - Limestone (CaCO₃) Chemical, & Bio., Dolomite (CaMg(CO₃)₂) Chemical

Elinesto		arbonate rocks mainly composed of			
		talline calcite (clay size <0.004mm) or Limemud,			
Micrite		ucent matrix, formed by <u>chemical or biochemical</u>			
		ion in low energy environment			
	Clear granular (sugary) calcite (>0.004 mm), with orthochemical				
Sparite	material, formed by precipitation or recrystallization of micrite,				
(cement)	-	in interstitial spaces of carbonate sediments			
Biolithic		inal void space)			
Diolitilite	organisms bound together by precipitated material in situ Transported chemical or biochemical precipitates, with an				
Allochems		ns, formed by syndepositional erosion of partially			
(Intraclast)	lithified sedime				
	Include intracla	asts, ooliths, peloids, & bioclast (skeletal Particle)			
		llochems (Intraclasts)			
Ooliths		trically laminated carbonate structures			
Pisolites		s Oolites, but different in size			
Oncolites Pelloids		roidal stromatolites nonate particles without an internal structure			
Skeletal		shell fragments, Marine invertebrates			
Particles	TOSSIIS, DIOKEIT	shell hagments, Marine invertebrates			
(bioclasts)					
Carbona	te Rock	v			
Classifica	tion is Based on	arit			
depositio	onal texture	Intraclasts = Intrasporite Oolites = Oosparite Fossils = Biosparite Pellets = Pelsparite			
(mainly	proportion of	Intraclasts = Intras Oolites = Oosparite Fossils = Biosparite Pellets = Pelmicrite			
allochem	ns), & there are	s s loon osp efm			
2 mair					
schemes		Intracla Oolites = Fossils = Pellets =			
	% & type of	Pei Fos			
	hem, Micrite vs	ALLOCHEM			
2. Dun	te matrix	GRAINS			
	ndance of	Microcrystalline Sparry allochemica			
	hems (ratio	limestones			
grair	,	(Ooze matrix)			
Origi					
-	ponents bound	Microcrystalline limestones			
toge		(Micrites)			
■ (Calm deposited	MICROCRYSTALLINE SPARRY CALCIT			
١	vs agitated	CALCITE MATRIX CEMENT			
١	water				
• [Mud-bearing vs	(Ignoring recrystallization)			
	nud-free sedime				
• (Grain vs mud sup	port			

Original components bound together (biological)

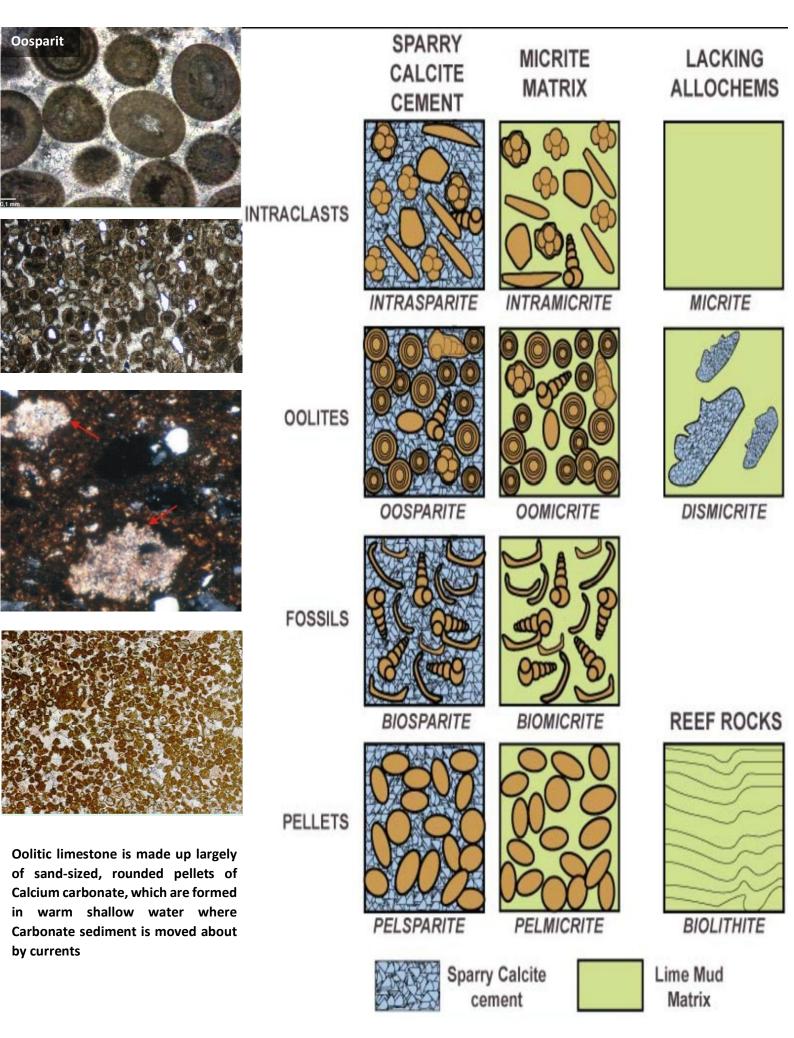
Depositional texture recognizable

framework in mechanically deposited limestone, equivalent to quartz, feldspar, & lithic fragments in sandstones

Carbonate Rock Classification

- 1. Presence or absence of lime mud
- 2. Calm waters allow for the accumulation of lime mud & ndicates the absence of current induced agitation
- 3. Grain Support: self supporting framework (fluid circulation, diagenesis)
- 4. Grain kind: standard microfacies types
- 5. Grain size, rounding, & coating: hydrologic interpretations
- Biogenically ppt masses bound at time of deposition: Boundstone, Organic framework, Laminations not consistent with gravity (stromatolite), & Roof over sediment filled cavities
- Limestone is recognized in the outcrop & hand-specimen by its softness
 & with diluted cold HCI: CaCO₃ + 2HCI → Ca²⁺ + 2CI⁻ + CO₂ + H₂O.
 - Dolomite reacts visibly, only when powdered, with the HCl.
 - dolomite commonly weathers with a dull brownish yellow appearance because it usually contains some ferrous iron as substitute for Mg in the crystal lattice.
- most limestones can be described by:
 - 1. the type of clastic **GRAINS**
 - 2. the presence or absence of calcium carbonate mud matrix
- 3. the presence or absence of coarse crystalline Ca-carbonate cement
- The matrix in limestone is the calcium carbonate mud that binds the allochemical grains to lithify the sediment
- Microcrystalline (1-5 microns) matrix is called micrite (calcite mud)
- microspar is applied when the calcium carbonate matrix is 5-15 microns
- Calcite cement is applied when the size of the calcite is > 20 (0.02 mm)
- Classification of limestones is based on textural variation since mineralogical variations are lacking!

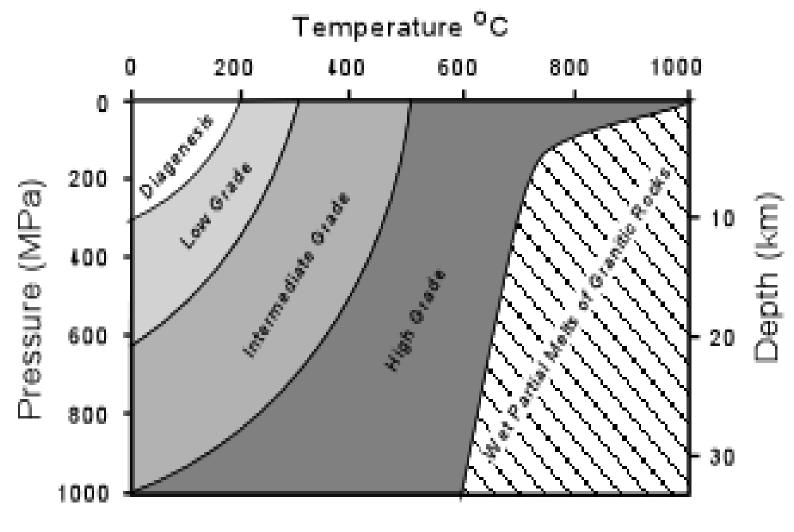
Original components not bound together at deposition


Contains mud (particles of clay and fine silt size)			
Mud-su	pported	Grain-su	pported
Less than 10% Grains	More than 10% Grains		
Mudstone	Wackestone	Packstone	Grainstone
	10		2000

Original components bound together at deposition. Intergrown skeletal material, lamination contrary to gravity, or cavities floored by sediment, roofed over by organic material but too large to be interstices

Boundstone

ł


Metamorphic Rocks

- Metamorphism (change form): is a mineralogical & structural changes in response to change physical & chemical conditions (T, P, & Composition) at depths below zones of weathering & diagenesis
- the changes in mineral & texture result from change P, T, chemical env.
- Diagenesis: change in form that occurs in sedimentary rocks

Processes	T [°C]	P [Mega Pa]	P [kbar]
Diagenetic Processes	< 200	< 300 Mpa	< 3
Metamorphism Processes	> 200 - 750	> 300	> 3

- Rocks subjected to higher T, & P as buried in the Earth, burial take place as a result of tectonic processes (continental collisions, subduction)
- The upper limit of metamorphism occurs at the P-T of melting point, Once melting begins the process changes to an igneous process rather than a metamorphic process
- As T-P increases the rock undergoes <u>prograde metamorphism</u> or <u>grade</u> of metamorphism
- Metamorphic grade: T-P condition under which metamorphic rock form

Grade	T [°C]	Ρ	Characterized by
		[Mpa]	
Low	200 – 320	< 600	Abundance of hydrous minerals
Medium	320 - 500	<1000	Hydrous become less hydrous (losing H ₂ O)
High	> 500	>1000	Abundance of Anhydrous minerals

Texture		Grain Size	Rock Name	
-		Very Fine	Slate	
F 0 1 i		Fine	Phyllite	r a e n a c
a t d		Medium to Coarse	Schist	s r i p n h
		Medium to Coarse	Gnesis	s

Non	22A	Medium to Coarse	Marble	
1 0 1 1		Medium to Coarse	Quartzite	
t e d		Fine	Anthracite	

Classification of Metamorphic Rocks

- **Classification of metamorphic rocks is based on**: mineral assemblage, texture, protolith, & bulk chemical composition of the rock
- Textural term based on individual mineral that bounded by crystal face
 - > Idioblastic: minerals that are bounded by their own crystal faces
 - > **Xenoblastic**: minerals that show none of their own crystal faces
- **Foliation:** caused by a preferred orientation of sheet silicates, All could be *porphyroblastic* (i.e. contain porhyroblasts)
 - ➤ Slatey cleavage → slate foliation
 - ➢ phyllitic foliation → phyllite, shistose foliation → schist
 - Gneiss: rock shows a banded texture without a distinct foliation
- Crystalloblastic series: examination of metamorphic rocks
- metamorphic minerals can be listed in a sequence in order of their tendency to be idioblastic (each mineral tends to develop idioblastic surfaces against any mineral that occurs lower in the series)
- > This series can enable us to determine the origin of a given rock
- porphyroblastic textures: large grains set in a fine groundmass
- **granoblastic** texture, where similar-sized grains have typical 120° grain boundary intersection
- Index minerals minerals form under restricted range of T, & P & are recorded in similar lithologies subjected to the same conditions

Crystalloblastic series

Rutile, sphene, magnetite

Tourmaline kyanite, staurolite, garnet, andalusite

Epidote, zoisite, lawsonite, forsterite

Pyroxenes, amphiboles, wollastonite

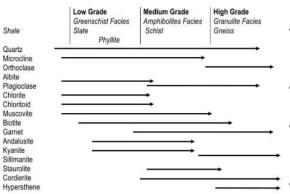
Micas, chlorites, talc, stilpnomelane, prehnite

Dolomite, calcite

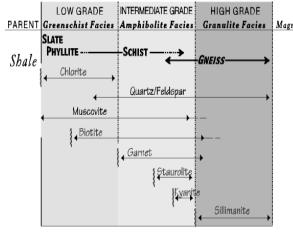
Scapolite, cordierite, feldspars

Quartz

Types of Metamorphism


- Three types of metamorphism:
 - 1. Contact metamorphism (by heat, recrystallization)
 - 2. Dynamic metamorphism (by pressure)
 - 3. Regional metamorphism (by both heat & pressure)

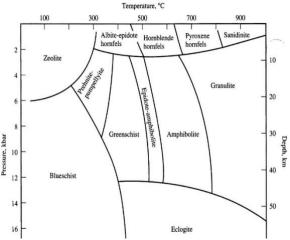
Cataclastic Metamorphism mechanical deformation, when 2 bodies of rock slide past one another along a fault zone

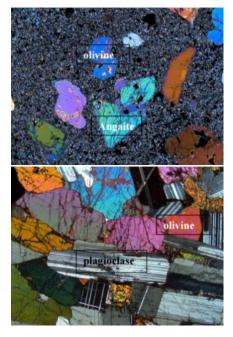

- Heat is generated by the friction of sliding rocks, & the rocks tend to be mechanically deformed, being crushed & pulverized, due to the shearing
- Isn't common metamorphism type & restricted to a narrow zone along which the shearing occurred

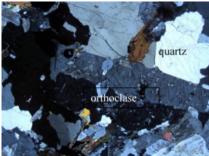
Burial Metamorphism as sedimentary rocks are buried to depths of several hundred meters, T > 300°C develop in the absence of differential stress

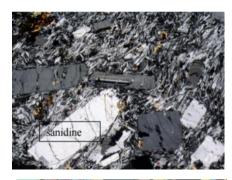
- New minerals grow, but the rock doesn't appear to be metamorphosed
- The main minerals produced are Zeolites
- Burial metamorphism overlaps with diagenesis, & grades into regional metamorphism as T & P increase

- Low: Chlorite
- Low-Medium: Mica (Biotite & Muscovite), Garnet, &Kyanite
- Medium: Staurolite
- Medium-High: Andalusite
- High Grade: Sillimanite


Contact metamorphic rocks


- Contact Metamorphism: occurs adjacent to igneous intrusions & results from high T associated with the igneous intrusion (as heat transferred from intrusion to the surrounding rocks by conduction or convection)
- metamorphic or contact aureole: zone surrounding the intrusion where metamorphism occur
- Contact metamorphism characteristic by: high T, low P, fine-grained non-foliation (*hornfels, marble*), granoblastic texture, porphyroblastic texture, & Poikiloblastic texture
- The aureoles around granitic batholiths (700-850C) are wider than around gabbroic bodies (900-1100C) due to the large amounts of fluids associated with granitic magmas compared to dry gabbroic magmas
- Contact Metamorphism involves recrystallization of a minerals
- Marbles CaCO₃, derived from dolomite & limestones, & can have other minerals (diopside pyroxene, amphiboles, olivine, graphite, & garnet)
- Index minerals


In the case of metapelitic compositions from lowest to highest T chloritemuscovite \rightarrow biotite \rightarrow and alusite-garnet \rightarrow staurolite-kyanite \rightarrow sillimanite In the case of metamafic compositions from lowest to highest T Chlorite M_{Agma} tremolite \rightarrow hornblende- clinopryoxene-orthopyroxene-olivine


Regional Metamorphic Rocks (metapelitic)

- Regional Metamorphism: occurs over large areas,
- Regional Metamorphism characteristic by: deformation under nonhydrostatic or differential stress conditions, foliated (*slate, phyllite, schist, & gneis*)
- differential stres result from tectonic forces that produce compressional stresses in the rocks, such as when 2 continental masses collide
- Compressive stresses result in folding of rock & thickening of the crust, which tends to push rocks to deeper levels (higher T-P)
- Shales (mud rocks, pelitic rocks) are the sedimentary rocks with the most diverse composition (cryptocrystalline)
- metamorphic zonation based on the metarmorphic products of shales, & schistosity is the most characteristic feature of these rocks when regionally metamorphosed, due to the presence of a direction of maximum stress along the subduction zones
- The penetrative schistosity is defined by the parallel arrangement of platy phyllosilicates (chlorite, muscovite, biotite) & of prismatic minerals

26 Shaas N Hamdan

For the pictures (On the left of the page) give the rock name & texture

<u>Rock 1</u>

- **Rock**: Pyroxene Andesite
- > Classification: Volcanic rocks (Extrusive), Intermediate
- > Mineral Composition: Augite (Cpx) & OI is phenocrysts
- > **Texture:** Porphyritic texture (porphyritic phaneritic)
- Holocrystaline, Allotriomorphic, Melanocratic (Melano-andisite)

<u>Rock 2</u>

- Rock: Gabbro
- Mineral Composition: Olivine, Plagioclase, pyroxene (augite), olivine, amphibole (hornblende), opaque minerals
- > Classification: Plutonic "intrusive", Mafic "Basic", Course-grained
- > Texture: Phaneritic, Medium- to Coarse- grained phaneritic
- Mineral texture: cross hatching twinning, polysynthetic twinning, exsolution lamellae
- > Holocrystaline, Hypidiomorphic, Mesocratic (Meso-Gappro)

<u>Rock 3</u>

- > Rock: Granite
- Composition: quartz, alkali feldspar, biotite, opaque mineral + glass
- Classification: Felsic, plutonic "intrusive", & Coarse-grained
- Texture: Porphyritic, medium- to coarse-grained phaneritic, Serial (grain size increase in a NE direction), Granular texture
- > Other terms: Allotriomorphic, Hypocrystalline, leuco-granite

<u>Rock 4</u>

- Rock: Tachyte
- Composition: feldspar laths & phenocryst (Sanidine to orthoclase), the brown crystals may be biotite
- Classification: Felsic, volcanic "extrusive", fine-grained
- Texture: Trachytic (parallel to subparallel arrangement of feldspar laths, Porphyritic, phenocryst, Serial (grain size increase in SW direction)
- > **Other:** Hypidiomorphic, Holocrystaline, Leucocratic (leucotrachyte)

<u>Rock 5</u>

- Rock: Dunite (&may be lherzolite rich in olivine "90% > Ol > 40%")
- > **Classification:** peridotite, Ultramafic, asthenosphere rocks, plutonic
- > **Composition:** OI, Px (Cpx, Opx), minor opaque (comaite, magnetite)
- > **Texture:** medium grained phaneritic
- Other: Holocrystaline, Allotriomorphic, & Melanocratic (Melanodunite)

<u>Rock 6</u>

- **Rock:** Nepheline-syenite
- > Classification: Undersaturated, plutonic
- Composition: Blake may be sodalite, nepheline, alkali-feldspar, green crystals may be aegirine-augite, & brown may be biotite, lack of quartz (due to percense of nepheline "feldspathoid")
- > Some orthoclase crystals has a polysynthetic twinning
- > **Texture:** Porphyritic, medium- to coarse- grained phaneritic
- > Other terms: Holocrystaline, Allotriomorphic, Leucocratic

1. Aphenitic rocks: a. are extrusive igneous rocks b. are intrusive igneous rocks. c. cool very rapidly deep within the earth d. None of the above 2. Which of the following is the correct order from most silicic to mafic a. olivine – K feldspar – pyroxene – quartz b. Na feldspar – quartz – biotite – olivine c. olivine – Na feldspar – K feldspar – quartz. d. none of the above 1. Molten rock inside the earth is called & on the surface a. lava, magma. b. Lava, extrusive. c. intrusive, magma. d. Magma, lava 2. Which of the following is NOT a common component of igneous rocks? a. quartz b. Feldspar. c. Olivine d. Pyroxene. e. Garnet 3. The type of feldspar that contains either Ca or Na is called: a. K-feldspar. b. Plagioclase. c. Calcite. d. Olivine. e. granite 4. Which of the following lists of igneous rocks contain rock types that belong together in the same group? a. basalt; andesite; rhyolite (volcanic) b. basalt; gabbro; diorite d. granite; diorite; basalt c. gabbro; diorite; dacite 5. a volcanic & a corresponding plutonic have same chemistry a. trachyte, syenite b. andesite, granite c. syenite, trachyt d. rhyolite, basalt e. Rhyolite, diorite 6. An igneous rock that have a very small crystals are cooled very slowly a. true b. False Hint. Cooled rapidly 7. Foid syenite is composed of the minerals; quartz, K-feldspar, & olivine. a. true b. False Hint. Composed of feldspathoid rether than guartz 8. The type of plagioclase present in Gabbro is a. albite b. Orthoclase C. Oligoclase D. Sanidine E. non of the above 9. What is the percentage of alkali-feldspar in Tonalite?

State 2 methods to differentiate between Opx & Cpx under microscope

c) 50% - 70

a) < **10** b) 10% - 30%

1. Index color: Opx has 1st order interferense color (colourless in plane polarized light), Cpx has 2nd order interferense color (pale green colour in plane polarized light)

d) > 70

2. Extinction θ : Opx parallel, Cpx inclined (or oblique) extinction

<u>Give a possible name of the following rocks based on the given composition.</u> (Minerals arranged according to their Vol% in the rock)

- 1. <u>guartz, orthoclase, microcline, albite, Biotite</u> granite, or Rhyolit (felsic rocks in general)
- 2. <u>orthoclase, quartz, plagioclase, aegirine</u> Syenite, or Trachyte (felsic rocks in general)
- 3. olivine, orthopyroxene, clinopyroxene

Dunite, or other peridotite (ultramafic rocks with > 40%Ol)

Name 3 types of textures that can show intergrowth crystallization of minerals. For each texture state the names of minerals involved?

- 1. Exsolution intergrowth: between quartz & plagioclase pheldspar
- 2. Graphic intergrowth: between quartz & K-feldspar
- 3. Myrmekite: Graphic intergrowths of plagioclase & quartz
- 4. Poikilitic: such as ophitic, enclosure of plagioclase laths by augite
- 5. Interstitial or Intergranular: Cpx fills gaps between plagioclase
- **6. Graunular or granitic**: The grain-size is more or less uniform with euhedral, subhedral, & anhedral grains

Contact metamorphic rocks

What sequence of shale pass (higher grades of metamorphism)?

- 1. Shale, phyllite, gneiss, schist, slate, partial melting
- 2. Shale, phyllite, gneiss, slate, schist, partial melting
- 3. Shale, phyllite, slate, schist, gneiss, partial melting
- 4. Shale, slate, phyllite, gneiss, schist, partial melting
- 5. Shale, slate, phyllite, schist, gneiss, partial melting

What is order of index mineral appearance from low grade to high grade?

- 1. Chlorite, biotite, muscovite, garnet, staurolite, sillimanite
- 2. Chlorite, muscovite, biotite, garnet, staurolite, sillimanite
- 3. Chlorite, muscovite, biotite, garnet, sillimanite, staurolite
- 4. Muscovite, biotite, garnet, staurolite, sillimanite, chlorite
- 5. Muscovite, chlorite, biotite, garnet, staurolite, sillimanite

What silicate mineral is found in metamorphic rock of all grades?

1. Biotite 2. Sandstone 3. Feldspar 4. Garnet 5. muscovite

Which of the following is a common characteristic of metamorphic rocks?

1. cross-bedding 2. fossils 3. index minerals 4. lack of foliation

What is the usual orientation of foliation?

Horizontal, same as sedimentary rocks
 Random orientaion
 Vertical & parallel to stress
 Vertical & perpendicular to stress

Which of the following rock types is the most abundant in the Earth's crust? 1.sedimentary 2.igneous 3.metamorphic **4.Sedimentary & Igneous**

Scientists classify rocks by

1.Color 2.Mass-volume 3. Composition-texture-size 4. (1+3)

Which of the following index minerals forms at highest metamorphic grade1. Chlorite2. Sillimanite3. Biotite4. Garnet5. Orthoclase

Which of the following rocks is a characteristic contact metamorphism?1. quartizite2. Chlorite schist3. Gneiss4. Non of them

<u>A rock rich in pyroxene & anorthite with minor amount of olivine is called</u> 1.Amphibolite 2.Hornfels 3.Eclogite **4.Gabbro** 5.Non of them

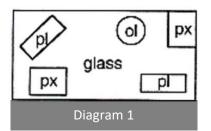
Shale refers to a rock formed from

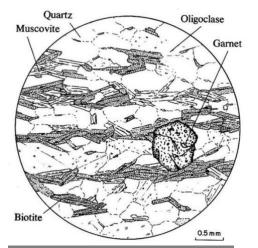
1. Sand sized 2. Plant remains **3. Clay minerals** 4. Carbonate

A feldspar rich sandstone is called

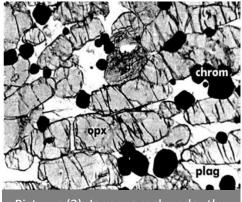
1. Arkose 2. Litharenite 3. Quartz arenite 4. Shale 5. Greywacke

Which of the following minerals not found in silica undersaturated rocks?


1. Biotite 2. Nepheline 3. Leucite 4. Quartz 5. Orthoclase


<u>As early-crystallizing mineral is surrounded by a thin rim of a late-forming:</u> 1. Sub-ophitic 2. Graphic **3. Corona** 4. Poikilitic 5. Perthitic

Ophitic texture is a typicaltexture**1. Gabbroic**2. Granitic3. Exsolution4. (2+3)5. Non of them


Sedimentary rock changed to slate during regional metamorphism?

1. Breccia 2. Conglomerate 3. Shale 4. Limeston 5. Greywacke

Pictures (1): metamorphic rock under the microscope

Pictures (2): Igneous rock under the microscope

A coarse-grained rock, consist of equal proportions of alkali feldspar & plagioclase & minor quartz would be called

1. Syenite 2. Basanite 3. Diorite 4. Monzonite 5. Non of them

Which of the following rock types is depicted in the diagram 1?

1. Basalt 2. Rhyolite 3. Andesite 4. Gabbro 5. Diorite **Hint. Thioliitic basalt**

Which of these metamorphic rocks breaks along foliation lines?

1. Gneiss 2. Marble 3. Quartzite **4. Schist** 5. Diorite

What type of metamorphism exhibits high temperature but low pressure?**1. Contact**2. Fault zone3. Regional4. Dynamic

During metamorphism a quartz arenite will change into what type of rock?1. Slate2. Marble3. Schist4. Gneiss5. Non of them

Which rock of the following is highly sorted

1. Conglomerate 2. Arkose 3. Breccias 4. Greywacke 5. Qz arenite

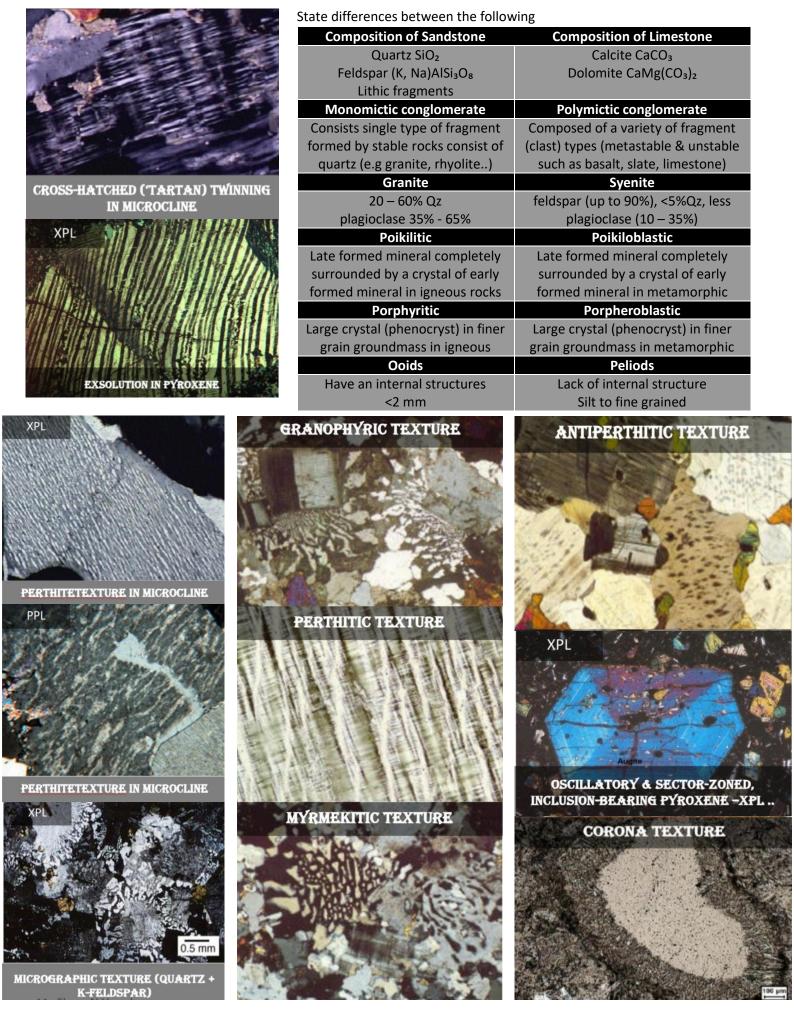
<u>A rock that consists of detrital quartz, alkali feldspar & about 25% matrix of silt & clay-sized particles is called</u> **Greywacke**

<u>Conglomerates consist of gravel-sized framework grains. Matrix (sand or</u> <u>finer) is less than 15%. Known as</u> **Orthoconglomerate or True conglomerate**

The intrusive compositional equivalent of andesite is diorite

See pictures (1) & answer the questions

- 1. <u>Name for this the rock:</u> Garnet-Biotite Schist
- 2. <u>Type of metamoprphism:</u> Regional metamorphism
- 3. metamorphic grade: Medium Grade
- 4. Protolith: Shales
- 5. <u>Main textural features</u>: Idioblastic, shistose foliation (due to orientation of Micas), porphyroblastic


See pictures (2) & answer the questions

- 1. <u>What type of plagioclase present</u>? High T (Ca-rich) plagioclase from Labradorite to Anorthite
- 2. <u>What is the order of crystallization</u>? Plagioclase, Pyroxene, Chrom (Respectively)
- 3. <u>This rock is (felsic, intermediate basic, ultramafic)</u>? Mafic (Basic)
- 4. <u>Texture</u> Phaneritic, Poikilitic, Holocrystaline, Hypidiomorphic
- 5. possible name of this rock? Gabbro

Match each rock with its first-order metamorphic equivalent

Protolith	Metamorphic rock		
1. Basalt	A. Amphibolite		
2. Conglomerate	B. Gneiss		
3. Dolostone	C. Marble		
4. Limestone	D. Metaconglomerate		
5. Granite	E. Quartzite		
6. Sandstone	F. Slate		
7. Shale			

(1 & A), (2 & D), (3 or 4 & C), (5 & B), (6 & E), (7 & F)

