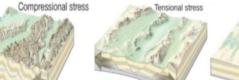
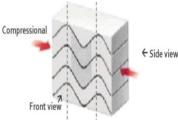

STRUCTURAL GEOLOGY Shaas N Hamdan

STRUCTURAL ANALYSIS

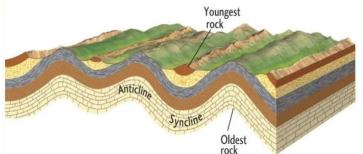

Descriptive analysis	 The characterization of geologic structures (shape & appearance) Include development of the following: Precise vocabulary (jargon) To describing structural orientation in 3D
Kinematic analysis	 The determination of movement paths of rocks during transformation from the undeformed to the deformed state <i>Include</i>: Use of features in rocks to define direction of movement on a fault
Strain analysis	 The development of mathematical tools for quantifying the strain in a rock <i>Includes</i> the search for features in rock that can be measured to define strain
Dynamic analysis	 The development of an understanding of stress & its relation to deformation Includes: The use of tools for measuring present-day state of stress in the Earth Application of techniques to interpreting state of stress for microstructures in rocks
Mechanism analysis	 Study of processes on atomic to grain scales that allow structures to develop Includes study of fracture & flow of rocks
Tectonic analysis	 The study of the relationship between structures & global tectonic processes <i>Includes</i> the study & interpretation of: regional-scale (megascopic) features relationships among structural geology, stratigraphy, & petrology


• Structural geology examines the present state of crustal deformation & determine the original setting, & the nature & direction of the tectonic forces that produced rock structures

STRESS & PRESSURE

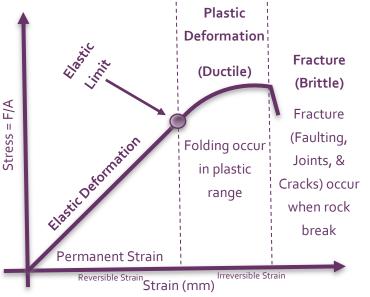
 Factors that determine the amount & type of a rock deformation (T, P, X, P_F, t, df/dt): Temperature, Pressure, Fluids, Composition (rock type), Time, & rate of deformation

Types of stress			
Confining	• equal in all directions		
(Uniform, or	reduced volume without deformation		
direct)	 lead to deformation if great enough 		
Differential	• aren't equal in all directions		
stress	• include Tensional, Compressional, Shear		
Differential Stress			
Compressive	• Tectonic stress, <i>Squeezes rocks & shorten</i>		
stress	the distance between 2 points		
50,655	Produce: Folds, reverse & thrust faults		
Tensional	• Stretches rock & lengthens the distance		
stress	between 2 points		
Suess	• Produce :elongation, fracture, normal fault		
	• Slippage & translation of rocks, acts as		
Shear stress	parallel forces but in opposite direction		
	Produce: Beading & Breaking		
	5 5		



التثني غير واضح في side view لان القوة تكون عامودية عليه strike (و هو اتجاه ال strike الذي يكون به ال apparent dip angle تكون القوة = صفر) بينما ال front تكون القوة موازية لاتجاه الناظر حيث يكون اكبر قيمة

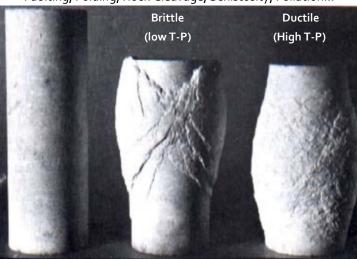
- Rock deform under 3 orientations for the directed stress
- STRESS vs STRAIN: strain are actually observe & directly measure but Stress are not directly measured but inferred or constrained from the strain



ROCK FOLDING IS INFLUENCED BY THE TYPE OF ROCK AND THE COMPRESSIVE FORCES

DEFORMATION STAGES

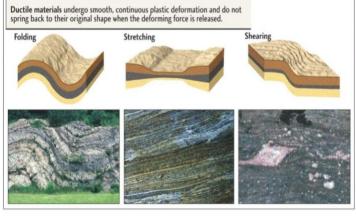
- Rocks deform under stress
- **Deformation**: changes in volume &/or shape of rock body

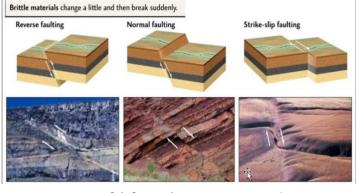

- **Stress**: is a force applied per unit area [N/m] of rock material, & it's a vectorial amount (magnitude + direction) $P^{\rightarrow} = F^{\rightarrow}/A$
- Strain: is a deformational response of rock to stress applied

Deformation	Behavior & Examples		
Elastic	Return to it's original size & shape		
Plastic	Breaking slowly, has a lot of 'give' (undergo		
(bend, flow)	smooth), include Folds, & Mylonite		
Brittle	Little change, then break suddenly or quickly		
(break)	into sharp pieces (Joints, Fault floor & breccia)		

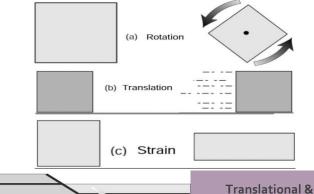
Shaas N Hamdan

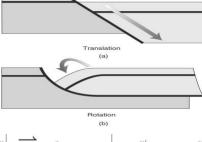
Shear stress

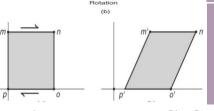

• **Deformational (or Stress) produces:** Fractures, Veins, Faulting, Folding, Rock Cleavage, Schistosity, Foliation...



Deformation of marbles by compressive forces under confining pressures similar to shallow (middle) & deeper crust (right) كلما تعمقنا اكثر في ال crust تزداد الضغوط الجانبية بسبب سماكة الصخور (يحدث deeper crust) ما يفسر اختلاف ال shallow بين deformation و

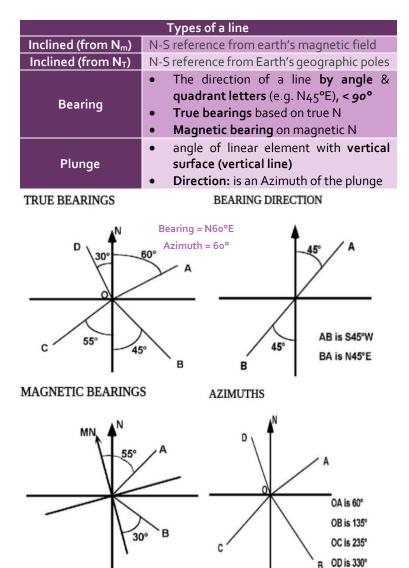

M	aterials	Behavior
	Ouctile Plastic)	 Have a small region of elastic behavior & a large of ductile behavior before fracture High T, high confining P, & low strain rate
E	Brittle	 Have a small or large region of elastic behavior & only a small region of ductile behavior before they fracture Low T, low confining P, & high strain rate
Temperature	Sej Miarc Brittle Materials	Ductile Materials Mi. Brittle arials
		Pressure


- Rocks undergo ductile deformation when subjected to high confining pressure & temperature near the surface & in the upper crust, & ductile structures form at greater depth
- (TN) topography: Joints, faults, folds , Dome, Valley & Ridge



Components of deformation: Rotation, Translation, Strain

Translational & rotational along a fault: a) A translated fault block, b) a rotated fault block in a hanging wall

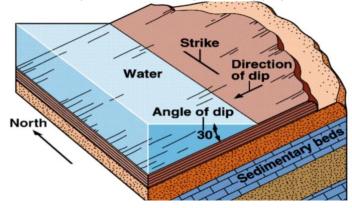

Deformation represented as a coordinate transformation

ATTITUDES & VICTORS

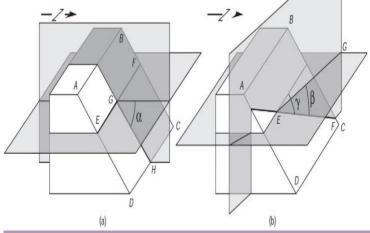
- Attitude: Orientation of a geometric element in a space
- Attitudes of a point: Length, width, & height
- Attitudes of a line: Bearing, & Azimuth
 - > **Bearing** horizontal angle, **plunge** inclined angle
- Attributes of a plane: Strike line (Straight line on the surface, in Degrees) & Dip (angle + direction)
- Types of Angle:
 - Horizontal angle [degree, minute, second]: measured in a horizontal plane by level instrument, Used to determine locations of points & orientations of lines
 - 2. Azimuth [degree from N]: from a reference meridian

Types of a horizontal angles		
Interior	Inside closed polygon, measured clockwise or counterclockwise with direction (e.g. 45°NS)	
Deflection	Right or left from an extension of the current	
	line to the next station (e.g. 45°L, 45°R)	
Types of a Azimuth angles		
True	Based on true north	
Magnetic	Based on magnetic north	

• **DIRECTIONS OF LINES:** Defined by a horizontal angle between the line & a defined reference line (meridian)



Bearing: Angle < 90° + Direction (e.g. S80°W) Azimuth: Only Angle (o - 360°) from N (e.g. 260°)

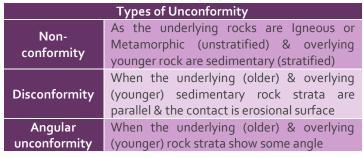

- **Strike:** direction of the line produced by the intersection of inclined plane with the horizontal plane (surface)
 - > **Direction**: Azimuth of horizontal line in dipping plane
- Dip: angle between the inclined plane & the horizontal plane
 - Direction: Azimuth of a horizontal line that is perpendicular to the strike

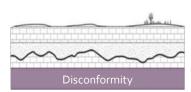
Apparent	Dip of a plane, imaginary vertical plane & not
dip	perpendicular to strike, ≤ True dip
True dip	Slope of a surface, horizontal angle of a plane
i i be dip	measured in vertical plane, perpendicular to strike

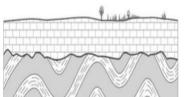
• Strike & dip direction are always mutually perpendicular

e.g. Strike (Azimuth) ooo, Strike (Bearing) N, Dip angle (Plunge) 30°, Dip direction (Bearing) NW → ooo, N30°W Shaas N Hamdan كيف نحدد اتجاه ال strike & dip ؟؟ تسير المياه في اتجاه اقصر واسهل الطرق وهذا الاتجاه يكون اتجاه ال dip اما ال strike فيكون متعامد عليه

a) Attitude of a plane: dip, & strike. strike of plane ABCD intersection with horizontal plane EF. GH is dip direction
b) Attitude of a line: plunge, & pitch. The plunge of EF is angle β (from EG in plane EF-EG) & line EG is the plunge direction. pitch (γ) angle that EF makes with strike of plane ABCD


Other terms			
Position	Location of a geometric element (outcrop)		
Pitch (rake)	Angle between linear element that lies in a given plane & the strike of that plane		
Trace	Intersection line between 2 non-parallel surfaces		
Profile	Perpendicular to a geometric element (e.g. the		
plane	plane perpendicular to the hinging line of a fault)		
Trend	Azimuth of any feature in map view sometimes used as synonym for strike Eat Structure		
Foliation	Surface occurs repeatedly in a body of rock		
Lineation	Penetrative linear element (e.g. intersection in bedding cleavage or alignment of elongate grains)		

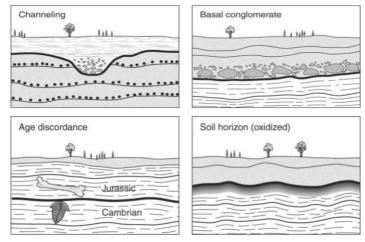

GEOLOGIC STRUCTURES


- There are 2 types of geologic structures:
 - Primary Structures (Architecture): formed at the time of rock origin deposition or crystallization (e.g. Unconformity, cross-Bedding, Ripples)
 - 2. Secondary Structures: formed due to tectonic activities after deposition, imparted by strain in response to stress (e.g. Fracture, Cracks, Folds, Faults, Joints)
- Law of Original Horizontality (Conformity): The fundamental laws of stratigraphy (by N. Steno), state that any deposition when takes place is in a horizontal fashion
 - After deposition the layers or beds are tilted by tectonic movement (except cross-bedding which are formed under fluvial "riverine" or aeolian "wind" environments)
- Superposition law: Strata follow one another in chronological order, but not necessarily continuous
 - Separated but aligned outcrops of the same lithologic sequence imply stratigraphic continuity
 - Sharp Discontinuities in lithologic patterns occurs due to faults, unconformities, or intrusive contacts
- Deformed areas subdivided into regions contain structural attitudes (domains), e.g. area with folded strata subdivided into regions with constant dip direction such as limbs & hinge areas of large-folds
- The least astonishment principle: The simplest but internally consistent interpretation is most correct

UNCONFORMITIES PRIMARY STRUCTURES

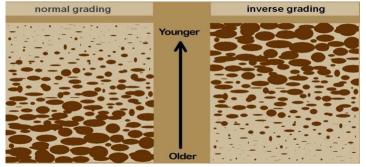
- **Unconformities**: are a significant bedding contacts which are break or gap in rock-stratigraphic record, indicate period of erosional or non-deposition
- Reasons for Unconformities (Formation involves): Horizontal or conformable strata are formed & break in sedimentation (deposition) due to tectonic movements, that causes uplift or subsidence & the next phase of sedimentation cycle, where new sedimentation produce another set of conformable beds
- Is one of the most common feature in rocks & succession
- different from all other structures
- resulted due to tectonic activity (uplift or subsidence)

Angular Unconformity



Buttress unconformity Angular unconformity: contact between layers at different angles Sediments tilted upward to angle of about 50°, then eroded. On this surface volcanic pyroclastic deposits were deposited as a flat sheet, The section of rocks has been eroding from the east, exposing tilted & flat rock layers.

Nonconformity



Features related to Unconformities

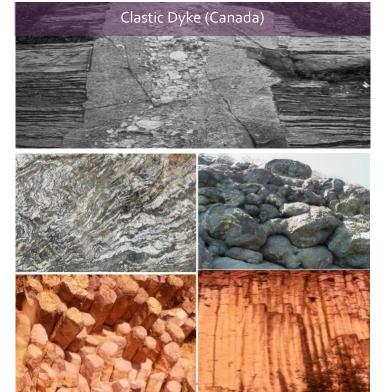
OTHER PRIMARY STRUCTURES

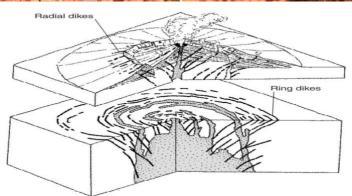
• Graded Bedding: a layer of sediment in which particle sizes change systematically in a vertical &/or lateral direction (applicaple to beds & laminae)


• **Current Ripples:** found at relatively low flow strengths in sands (<0.7 mm in diameter), asymmetric in cross-section

• **Cross-bedding:** Sets of internal strata, beds & laminae are not oriented parallel to the bounding surfaces of the bedset. Applicable to both beds (>1 cm) and laminae (<1 cm)

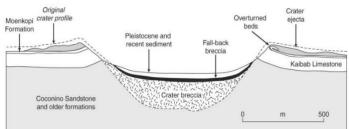
- Flute Casts: current-formed erosion structure
 - bulbous cast: formed by scouring of sediment interface, bulbous & generally points up-current
 - > Load Casts: irraular knobs found on sandstone overlying

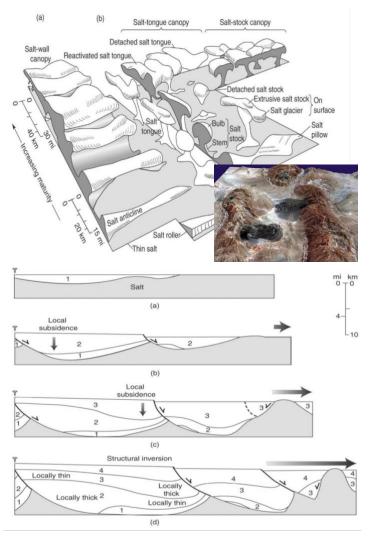


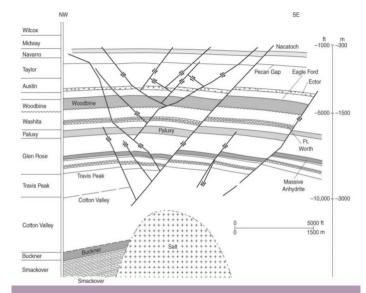

Shaas N	l Hamdan
---------	----------

Igneous Structures		
Batholith	A Huge blob-like intrusion, composite of plutons	
Dike	A sheet intrusion cross cuts stratification in a stratified sequence, or roughly vertical in unstratified sequence	
Hypabyssal	Intrusion formed in the upper few km of the crust; cool relatively quickly, & generally fine grained	
Laccolith	Hypabyssal intrusion concordant with strata at its base, but bows up overlying strata to dome or arc	
Pluton (intrusion)	Moderate-sized blob like intrusion (several km) the term used to refer to any intrusion	
Sill	sheet introns, parallels preexisting stratification in stratified sequence,&subhorizontal in unstratified	
Stock	A small, bloblike intrusion (a few km in diameter)	

Billows






IMPACT STRUCTURES

Salt structures

Salt dome

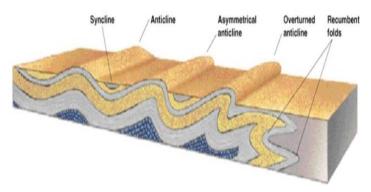
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	E (h)	Hemipelagic mud
	E (t)	Turbidite mud
	(D)	
	С	Rippled bed, convoluted laminae
	В	Planar laminae
}	D	Tianar iaminae
	A	Massive, graded bed
	Cross-bedding forward by	
2 2 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Turbidites (Boma sequence)	

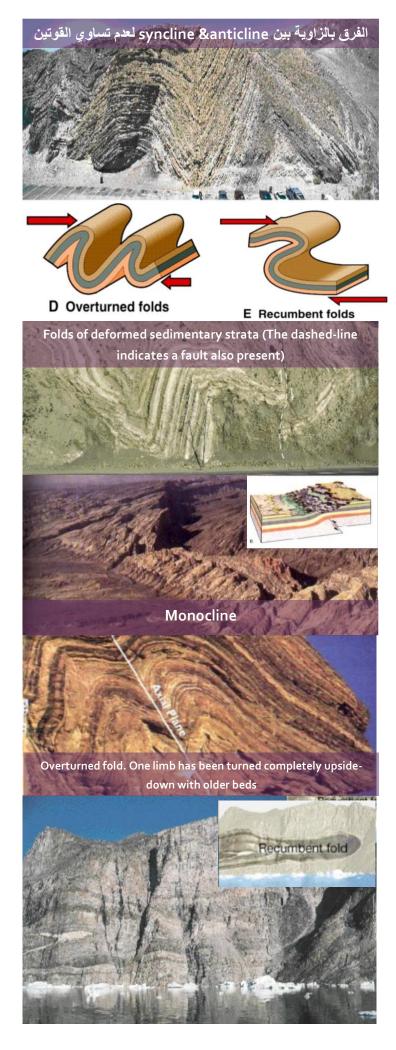
Other PRIMARY STRUCTURES

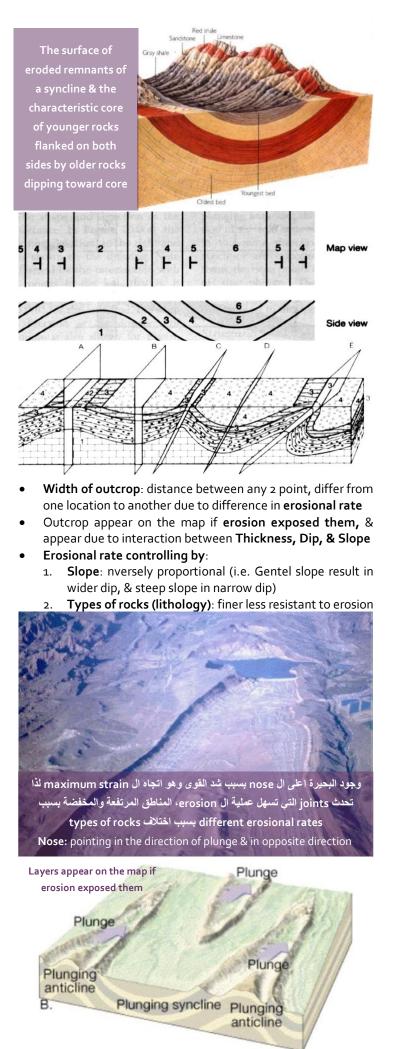
-

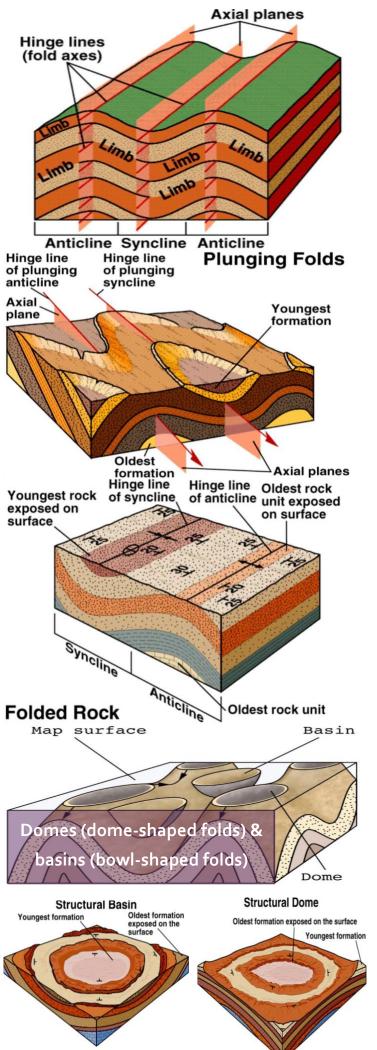
Penecontemporaneous structures

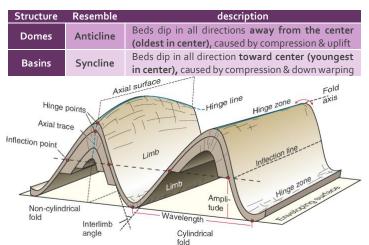
Pitted Pebbles

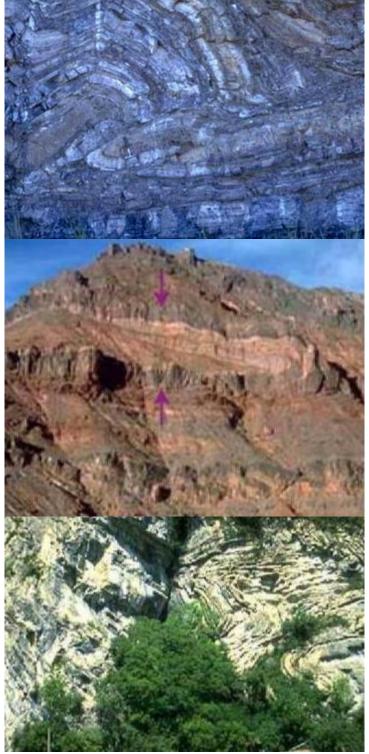

FOLDS SECONDARY STRUCTURE


- A fold: is a bent structure that originally was planar
- produced by horizontal compression or vertical forces, as pushing in on opposite sides or up from below
- Formed as rocks squeezed together by compressive forces
- Inequality in stresses is the cause of all local movements


Part of Folds			
Limb	The two sides of a fold, one direction of dip		
(Monocline)	prevails in a fold		
Axis (hinge	A line along the points of maximum curvature		
line)	of a layer of a fold, between 2 angle		
Axial plane	Divides a fold into 2 symmetrical parts		
Plunge	Angle of the axis with the horizontal plane		
Anticline	 Concave down or convex up, upfolds or arches, the oldest beds are in the center Non-plunging: if the axis is horizontal, nose in the direction of plunge Plunging: if there's angle between axis of anticline & the horizontal surface 		
Syncline	 Concave up or convex down, downfold or trough, the youngest beds in the center Plunging: nose are opposite to the plunge 		
Nose	intersection of a fold with a horizontal plane		




Folds	Axial plane	
Symmetrical limbs dipping symmetrically • have an equal bed width		vertical
Asymmetrical	One limb dipping more steeplyhave different widths	Tilted
Overturned	if fold bushed in one direction more than the other direction	One limb tilted
Recumbent if dip of Axial Surface 0-10 • overturned lying on its side		horizontal
Inclined	If the dip of Axial Surface 10-70°	Titled
Upright	If the dip of Axial Surface 70 -90°	Titled



• Engineering Concerns of Folds: Means of Extrapolating Bed Locations, Fracturing related to folding, Favorable or nonfavorable orientations of beds to engineered structure/ slope

FAULTS

SECONDARY STRUCTURE


- A faults: is a fracture in a rock with a relative movement parallel to the fracture (break in a rock across which there is observable movement)
- As break occurred an earthquake was generated
- Sometimes fault die at depth & don't break surface

 Sometimes 	on the at depth & don't break sonace		
Fault zone	Containing of parallel or anastomosing faults		
Shear zone	Zone across which 2 blocks displaced in fault, but without development of visible fractures		
Footwall	 The surface bounding the body of rock below a non-vertical fault), <u>rises down in reverse</u> <u>fault & up in normal fault</u> Footwall block: The body of rock itself 		
Hangingwall	The surface bounding the body of rock above a non-vertical fault), <u>rises down in normal</u> <u>fault & up in reverse fault</u> • hangingwall block: The body of rock		
Cut-off line	 The trace of a displaced plane on the fault Occur in pairs (footwall & hangingwall) 		
Slip	The displacement, represented by relative slip vector (hangingwall relative to footwall)		

- **Graben Fault:** produced when tensional stresses result in the subsidence of a block of rock (2 normal faults)
 - > Rift Valleys: is a large scale Graben Fault

• **Horst Fault:** is the development of 2 reverse faults causing a block of rock to be pushed up by compressional force

A fresh fault scarp after an earthquake

• Evidence for faults: change in topographic, Displacement, lineation, breccia (where no displacement), vines (craks)

Ore vein along

- A fault near the surface becomes mylonite at great depth
 - **Mylonite:** metamorphic rock formed by ductile deformation during intense shearing encountered with folding & faulting by cataclastic or dynamic metamorphism process
 - Characterised by smearing, flattening, & rotation of any porphyroblasts formed during metamorphism
- Cataclastic metamorphism: complete pulverisation of the parent rock so the original minerals are almost completely broken down & recrystallise as smaller grains which are tightly intergrown forming a dense hard rock
 - As a result of the shearing encountered during formation, recrystallised minerals grow preferentially along planes of foliation parallel to the direction of shear

• Types of faults:

1. Dip-slip fault: Normal, Reverse, & Thrust faults

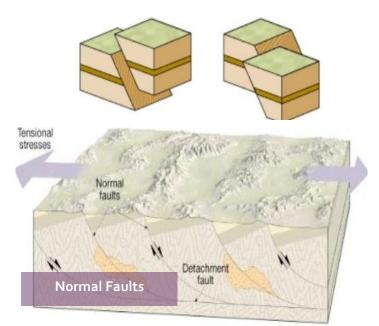
Reverse

Reverse

Thrust

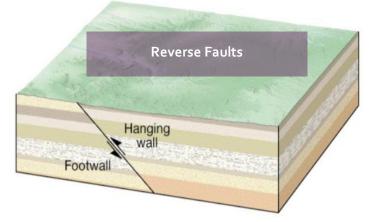
Result inCaused byHangingExtensionTensional forceDownShorteningCompressional forceUpReverse fault with gentle slope (< 45°)</td>

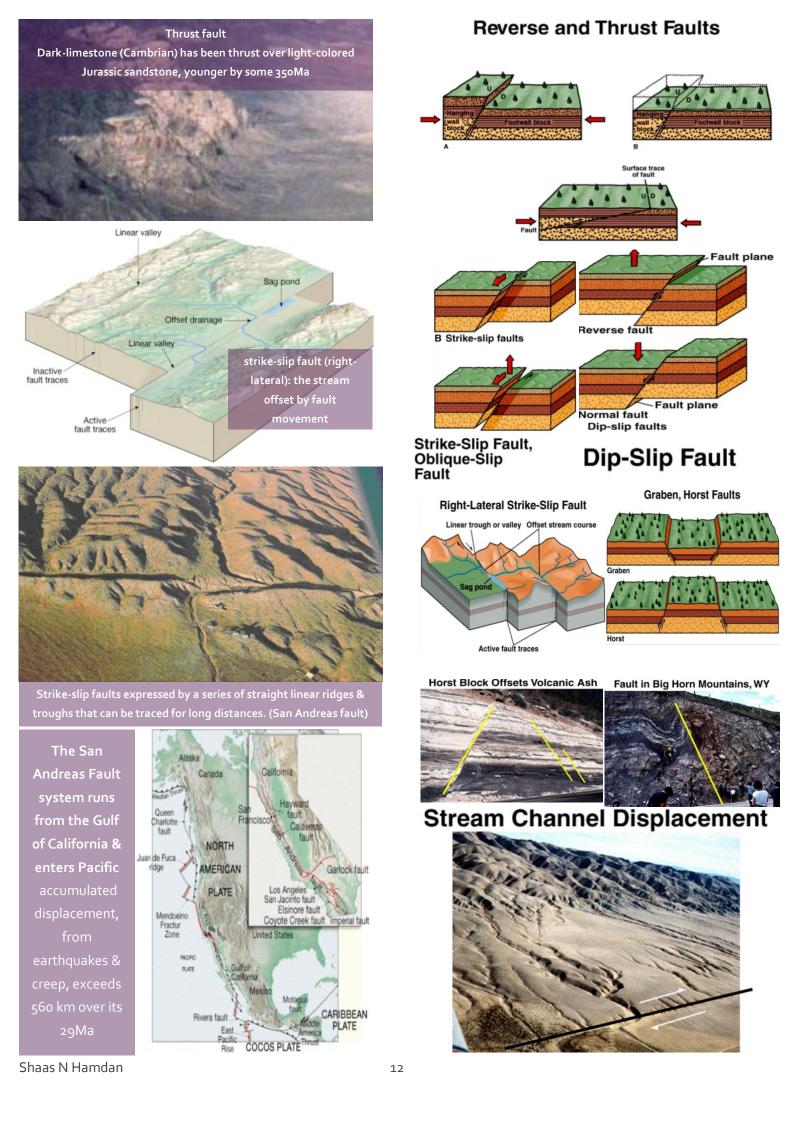
2. **Strike-slip fault**: associated with shearing forces, including left lateral, & right lateral faults

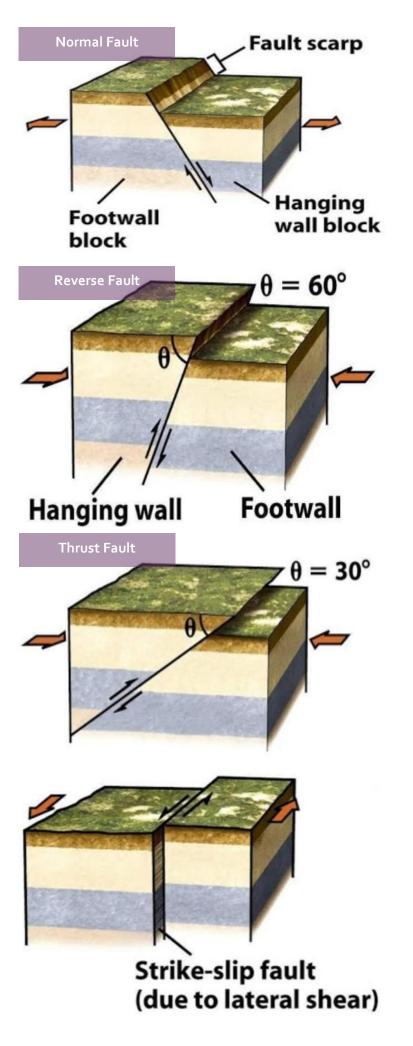


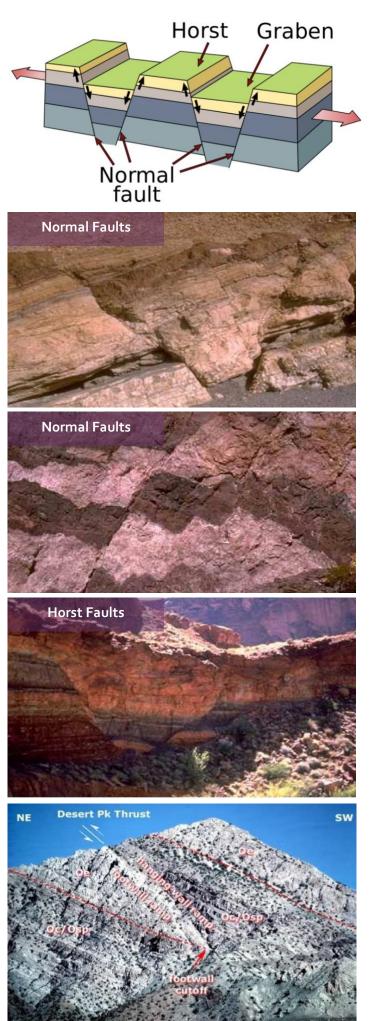
Left-lateral

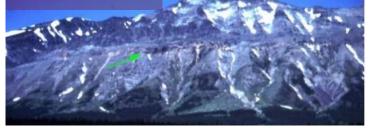
Right-lateral

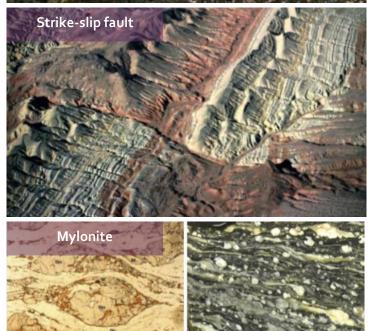

3. **Oblique-slip (translation)**: combination of shearing & compression-tension. (strike-slip & dip-slip faults)



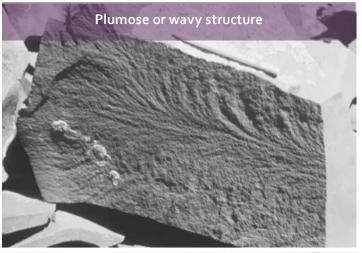



Normal faulting in the Basin & Range Province: Tensional elongated & fractured the crust, Movement along the fractures tilted the blocks producing parallel mountain ranges

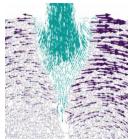


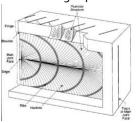


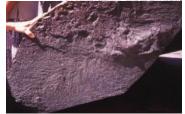
Sevier thrust

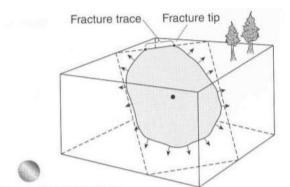


 Engineering Concerns of Faults: Planes of Weakness, Sources of Seismic Hazard if Active, Significant Water Courses, & Significant as Groundwater "Dams"

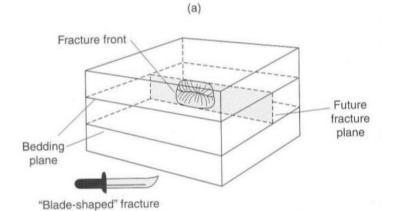

JOINTS (SECONDARY STRUCTURE)

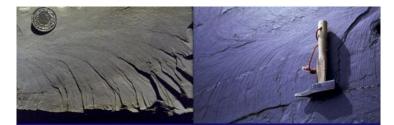

- A joint: is a crack in a rock along which no appreciable movement has occurred, produced when rocks are deformed by tectonic forces with some exceptions (a fracture without measurable shear displacement, cracks or tensile fractures)
- Joint: A natural fracture that forms by tensile loading- walls of fracture move apart slightly as joint develops
- Form perpendicular to weakest stress, often tensile σ₃
- Surface morphology of a joints: <u>Plumose structure</u> (wavy structure on joint), <u>Spreads outward from joint origin</u>
- **Plumose structure:** a subtle roughness on surface of joints; resembles imprint of feather. Due to inhomogeneity of rock

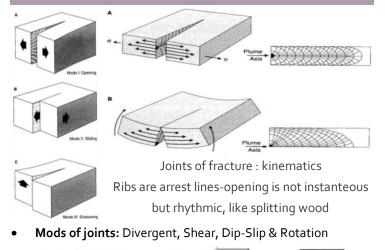


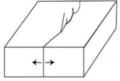

Spreads outward from joint

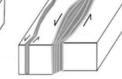
The formation of Plumose structure: loading of hetrogeneous rock yield smooth fractures perpendicular to stress (real joints are not perfectly smooth), & imperfections distort the local stress field, stress field at the tip of the propagating crack changes produced joints

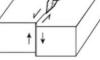





"Penny-shaped" fracture


Joints commonly elliptical

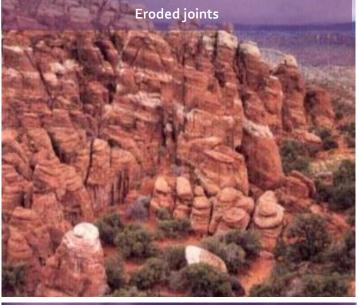




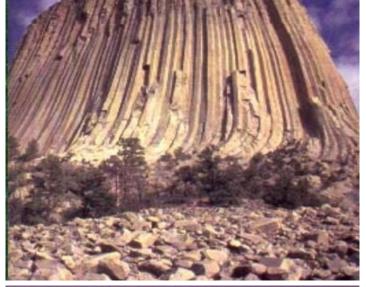
Close-up views of hackles in plumose structure Plumose structure is more prominent away from origin due to stress concentrations at crack tips

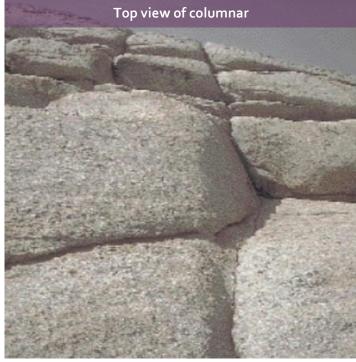
Mode | Tension

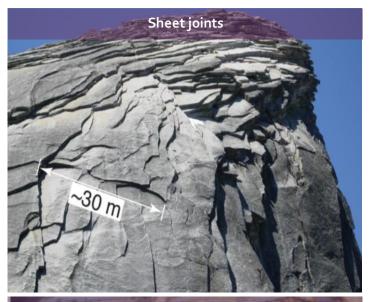
Mode II Sliding


Mode III Tearing

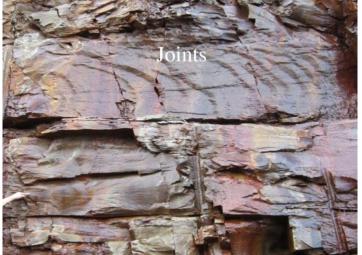
Divergent

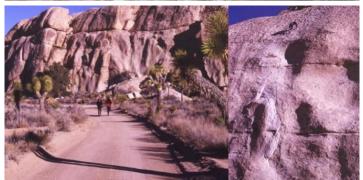

Shear (Transform) D


m) Dip-slip & rotation

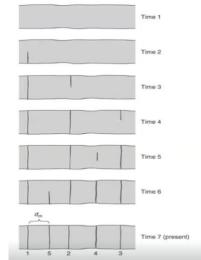

• **Types of joints**: Tectonic Joints (e.g. Eroded joints, & columnar joints), & Non-tectonic joints (sheet joints)

columnar joints form as igneous rocks cool & develop shrinkage fractures producing elongated columns

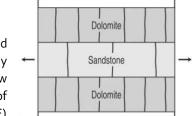




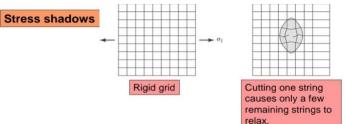
A fault offsets layers of sediment SS and clay layer



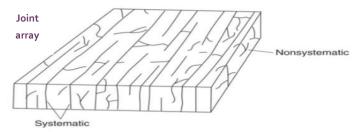
 Rock with low tensile develop more closely space joints & Rock with more tensile strain (stretching) yields more joints



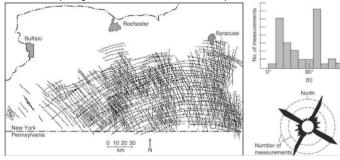
Joints Vs Lithology


- Joint Spacing in sedimentary rocks
 - Joints are mostly evenly spaced: widely or closely spaced depending on length of time & tensile stress applied
 - Joint spacing & bed thickness: Closely spaced in thin bedded & Widely in thick bedded

- Joint spacing & Lithology: Stiffness = Elastic value (Youngs modulus), Hookes law σ = E.e (e is the elongation strain)
 - Stiff dolomite fractures a few times before the sandstone fractured the first time because Dolomite stiffness >> Sandstone
 - 1. Stretch a block
 - Stress in each bed controlled by Hookes law (magnitude of stress depend on E)

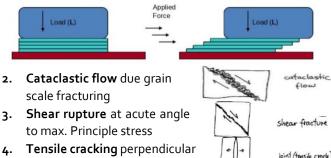


large E (stiffness) related to more stress, & fractured first
 Joint arrays (Systematic vs Nonsystematic)



Greater length of joint has Cutting many strings in a a wider stress shadow row causes a wide band of strings to relax - larger area affected

- Systematic joints: Planar joints, parallel or subparallel, with same average spacing
- Nonsystematic joints: Irregular spatial distribution, Not parallel to one another, Different average spacing

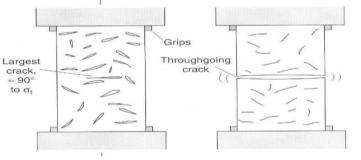


- Systematic joints: Planar, parallel to subparallel, Same average spacing
- Nonsystematic joints: Irregular spatial distribution, Not parallel to one another, Different average spacing
- Why study joints: Tectonics (paleostress), Geomorphology (drainage patterns)
- Methods to study joints in the field: Inventory (fracture density, & joint orientation: strike-dip), & Relate to tectonics

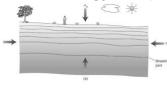
Categories of Brittle Deformation:

Frictional Sliding on preexisting fractures 1.

- 4. to dir of min. Stress
- Cataclastic rocks: is a metamorphic rock that wholly or partly formed by progressive fracturing
 - Rock fragments are reduced in size by crushing &
 - grinding of existing rock, a process known as cataclasis
 - cataclasis process is mainly associated with fault zones Cataclasite: cataclastic rock, formed during faulting, \geq
 - consisting of angular clasts in a finer-grained matrix

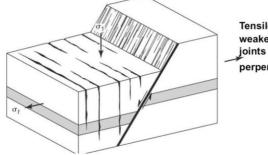


Stress Concentration & Griffith Cracks

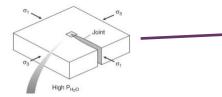

A stress concentration: is a location where stress is concentrated. An object is strongest when force is evenly distributed over its area, so a reduction in area, (e.g. crack results in a localized increase in stress)

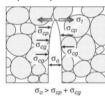
Griffith cracks: preexisting microfractures & flaws in rock, weakening it. Reason rock failure < theory

- **Origin & Interpretation of joints**
 - Sheeting joints: uplift & exhumation 1.

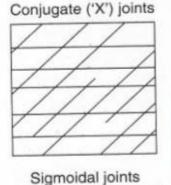


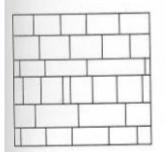
Sheeting joints

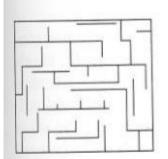


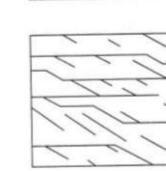

Regional divergence 2.

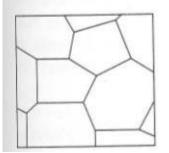
Tensile stress O₃ weakest is horizontal, joints form perpendicular to O3

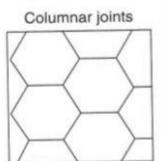

- 3. Natural Hydraulic fracturing: increases pore pressures in a pre-existing crack pushes outward (increases of tensile stress σ that allow cracks tip to developed)
 - > Stress in the Earth crust are mostly compressive

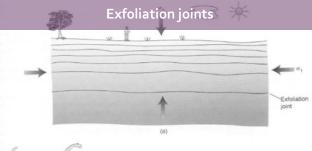





Orthogonal ('+') joints

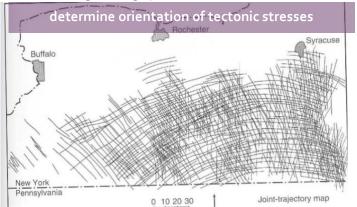

1			
		1	
_			
	1		
	1		

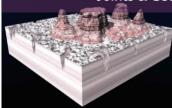


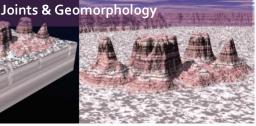


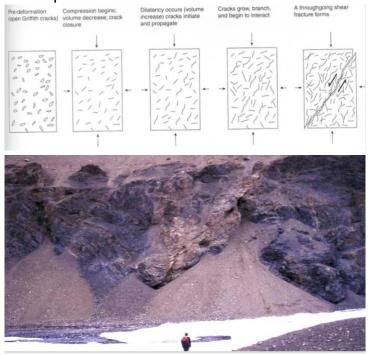
- Three competing mechanisms that contribute to joint formation during uplift and erosion:
 - 1. Contraction during cooling (by thermal construction)
 - 2. Poisson effect: Exfoliation joints, Form by unloading of bedrock through erosion parallel to topography (e.g., rock expands in vertical direction & contracts in horizontal direction during unloading)
 - 3. Membrane effect: Tectonic joints, expansion due to increase in curvature of layer by tectonic stresses as opposed to Stresses induced by topography

Exfoliation joints



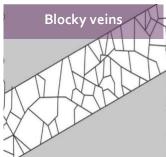

Shaas N Hamdan

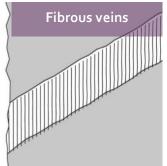

- Joints array significant
 - 1. Determine orientation of tectonic stresses
 - 2. Determining the Geologic Hazards
 - 3. For engineering : place of weakness

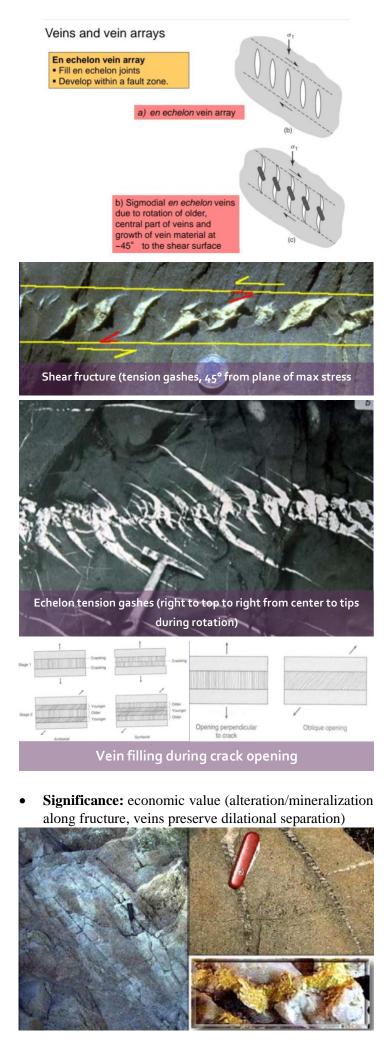


• Significant engineering of Joints: Planes of weakness

 Shear fracture: A fracture that grows in association with a component of shear


VEINS & VEIN ARRAYS


- Vein: A fracture filled with mineral precipitated from fluids
- Quartz or calcite are common vein fill
- Ore minerals occur as vein fill
- Vein Array: Groups of veins
- Stockwork array of veins: rock shattered & filled by mineral
- En echelon vein array: Fill en echelon joints, Develop within a fault zone
- Blocky vein fill equant, open fracture when mineral precipitated
- Fibrous vein crystals long relative to width

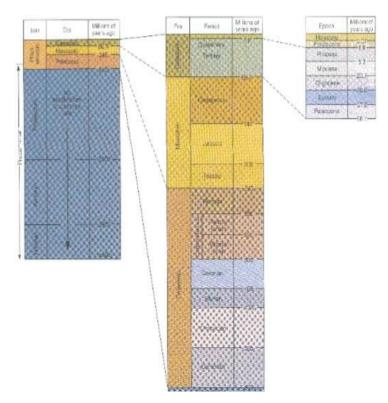


LINEAMENT

- A linear feature recognized on aerial photos, topographic maps or remotely sensed images
- Defined only on a regional scale
- Aligned topography, changes in vegetation
- Represent faults, joints, folds, dikes, or contacts.

• Lineaments are not always confirmed with ground truth. Represent faults, joints, folds, dikes, or contacts.

Lineaments are not always confirmed with ground truth.



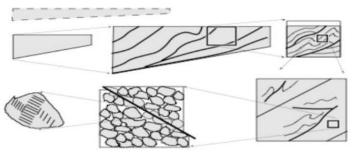
KINKS

Kink band: structure formed by brittle ductile deformation

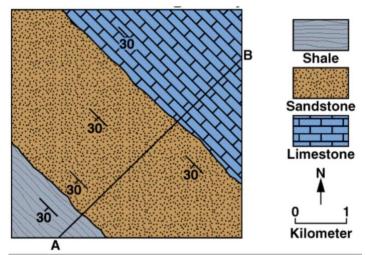
GEOLOGIC TIME

- Geologic time divided into Era, Period, Epoch based on major events (extinctions, mountain building)
- Age of the Earth (History)
 - Kelvin and a basis in heat flow (set at 20Ma)
 - Problem of fitting all of evolution in this time
 - Rutherford & the introduction radioactive decay
 - Added a head source, pushed ages back to 4.5Ga
- **Relative Time:** Principle of Superposition, Fossil Evidence, Cross Cutting Relationships, Unconformities, Alteration, cross-cutting relationships, & Fracture Termination
- Absolute Time: Basis on radiometric dating (Common dating tools 14C, K-Ar, Rb-Sr, & Uranium decay series) Precambrian: Minimal fossil record

Paleozoic (Old Life): Brachiopods, Trilobites, Fish

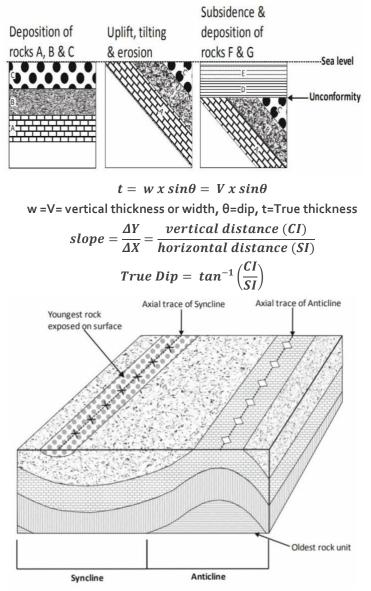

- > **Periods** based on English Geology
- Cambrian for Latin Wales
- > Ordovician & Silurian for ancient Welsh Tribes
- > Devonian for Devon
- > Carboniferous: Coal (Mississippian&Pennsylvanian)
- > Permian for Perm Basin in Ukraine

Mesozoic (Middle Life): Ammonites, Dinosaurs


- > Triassic: distinctive 3-layer stratigraphy in Germany
- > Jurassic: Jura Mountains in France & Switzerland

Cretaceous (Chalk): chalk that forms Dover's cliffs
 Cenozoic (Recent Life): Mammal, marine fauna (foraminifera)

- > **Tertiary** (before Ice Ages) & **Quaternary** (ice ages)
- > Primary & secondary have been long replaces
- > Rocks of Washington are Tertiary & Quaternary
- CEE 437 Structural Geology: World Stress, Brittle & Ductile Deformation, Faults, Joints, & Folds
- **Time scales:** geological processes occur over a wide range of characteristic time scales.
- The characteristic time scales for fault rupture: Stresses that accumulate steadily over many years, due to relative plate motion, may be released abruptly within seconds to tens of seconds.
- The characteristic time scales for dike intrusion: Modern dikes eruptions (e.g., in Hawaii) have lasted between a few hours and a few days (show a movie).
- The characteristic time scales for mylonite formation: The physical processes that accompany the formation of metamorphic fabric are slow (e.g., dissolution & reprecipitation of minerals).
- The formation of brittle structures is discontinuous & evolves via abrupt steps, the formation of ductile fabric is more or less continuous & is governed by slow processes
- Length scales: deformation is occurring simultaneously at a wide range of length scales, & The different scales include: Plate, Regional, Outcrop, Hand-sample, Grain, & Crystal



GEOLOGIC MAPS

- Elements of a geologic map: rock types, relative ages, geologic contacts between different rock units, geologic structures (e.g., faults), & maybe topographic contours
- Layer-cake stratigraphy: planar (horizontal) layers with constant thickness & continue
- Orientation of plane: boundaries between units or beds
- **Bed**: thin layers within the rock, each bed formed over a short period of time, & the surface of a bed formed the sediment surface at some point in the past
- Units: collection of adjoining bed that grouped together when have some similarity (mineralogy, palaeontology, structures) that indicate a process in their origin
 - Mappable & distinct from one another, but the contact doesn't have particularly distinct
 - Grouped together in stratigraphy as formations & members of formations
- Outcrop patterns: represent the intersection of 3D shape of the rock with the land surface
 - Where the rocks are flat & the land is not the boundaries will outcrop along topographic contour lines
 - Vertical features (or plane): straight line cut contours
 - > Horizontal layer: follow the contour lines (parallel)
 - Inclined layer: intersect the contour line (intersecting with the contour lines along the straight line))
 - > Plunging folds: not parallel in poth side of outcrops
 - > Non-Plunging folds: parallel in poth side of outcrops
 - Folds forming V shapes in valleys & ridges
- Geologists define the orientation of dipping beds using the terms **strike & dip**
 - Strike: azimuth (bearing on a compass) of a horizontal line on a bed (line perpendicular to steepest angle of dip) (e.g. 090 for a bed striking EW)
 - Dip: angle from the horizontal of the steepest gradient of the bedding surface (horizontal bed has a dip of N2oE)
 - Strike & dip are measured with a compass or clinometer on an area about 10cm x 10 cm
 - > Dip direction is from older to younger layers
 - True dip is a line perpendicular to the strike & is the steepest line along the plane of the bed
 - Apparent dip is the angle from a horizontal line that is not perpendicular to the strike

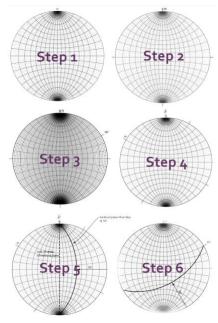
- **Dip variations** Folds & faults are the most common causes of variation in strike & dip
 - Folding & faulting , followed by subsequent erosion & deposition of a younger rock produces an unconformity
 - Unconformities are variations to the simplest case of sedimentary rocks, identifiable on maps as place where more than one younger rock is in contact with several older rocks

- Faults are surfaces in the Earth across which there has been some displacement, usually by cataclasis (the deformation of rock via crushing & shearing)
 - usually narrow in proportion to their length & breadth , often planar or gently curved & exist mainly in the top 10-15km of the Earth's crust
 - Below this depth , rock deforms in a plastic fashion , without fracturing, Because faults involve displacement, one of the targets of geologists is to quantify this displacement (ideally as a vector).
 - Horizontal offset (displacement) called heave
 - Vertical Horizontal offset (displacement) is throw
 - if horizontal beds are displaced horizontally, heave & throw are both zero
 - dipping beds with measurable heave & throw displacement could be solely horizontal, solely vertical or oblique

STEREONETS

Plotting a Plane

- An inclined plane plots alog a great circle
- The endpoint of the cyclographic trace of a plane with a nonzero dip are at diametrically opposed pointson the primitive circle, these points define the line of strike for the plane


EXAMPLE to drown a plane with 60° Strike & 50° Dip

Step 1: Lay tracing paper over stereonet

Step 2: trace primitive circle with a compass (label o°, 90°, 180°, 270°, & N at o) **Step 3:** Plot a strike mark (60°) on primitive circle

Step 4: rotate tracing to
placing the strike mark at N
Step 5: Draw the plane of
the dip (50°)

Step 6: Remove stereonet to see the results, Visualize the results, & check to see if they make sense

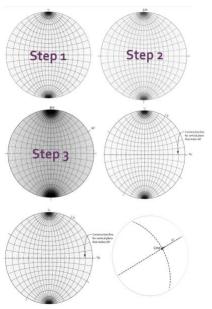
Plotting a Line

- A line lies at the intersecon of 2 planes:
 - **1.** A vertical plane (magenta) with a strike that matches the trend of the line
 - 2. An inclined plane (violet) with a dip that matches the plunge of the line & that dips in the direction line plunges

EXAMPLE to drown a line with 60° trend & 50° plunge

Step 1: Lay tracing paper over stereonet

Step 2: trace primitive circle with a compass (label 0°, 90°, 180°, 270°, & N at o)

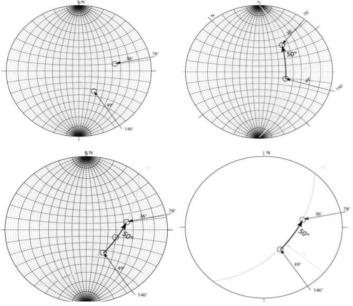

Step 3: Plot a trend mark (60°) on primitive circle

Step 4: rotate tracing to placing the trend mark at small circle

that projects as a straight line (i.e., the equatorial line)

Step 5: Mark off the plunge (50°), counting from the primitive circle towards the center of the plot (The line of interest is at the intersecon of the vercal pink plane and the plunging violet plane)

Step 6: Remove the stereonet to see the results

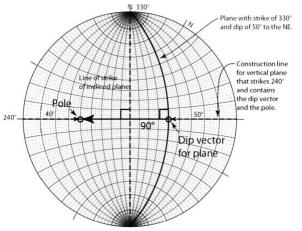

Measuring the angle between two lines

- The angle between the lines is measured along the cyclographic trace of the plane that contains the lines
- The procedure is exactly analogous to measuring the angle between two lines with a protractor

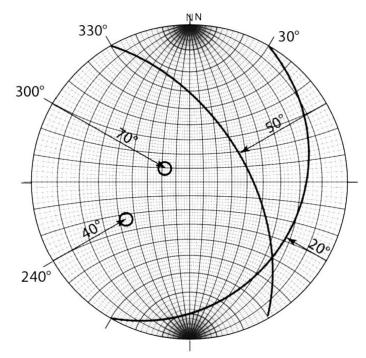
Example find the angle between 2 lines one trends 78° & plunges 36°; & the other trends 146° & plunges 49°

Step 1: Plot the lines

Step 2: Find the plane that contains both lines (Rotate the tracing paper such that both lines lie on a single great circle & measure the angle along the great circle between the 2 lines. Here = angle 50° & the common plane (green) dips 50°)

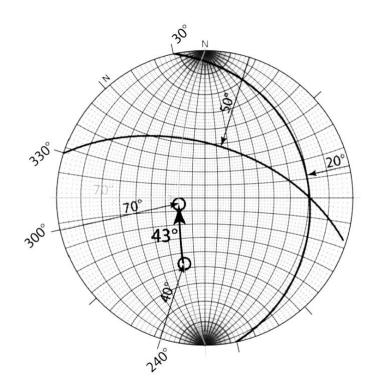


Plotting the Pole to a Plane


- The pole to a plane is a line that plotted like any other line
- The pole to a plane of interest lies in a vertical plane perpendicular to the plane of interest
- The pole also makes a 90° angle (as measured in the vertical plane) with respect to the "dip vector" of the plane of interest

Example Consider a plane of interest that strikes 330° & dips 50° to the NE, its pole can be found by simple calculations.

- > The pole trends 240° & plunges 40°
- The pole to a plane lies in a vertical plane perpendicular to the plane of interest
- The pole also makes a 90° angle (as measured in the vertical plane) with respect to the "dip vector" of the plane of interest



Measuring the angle between two planes

Measure angle between poles in a plane containing the poles

- Rotate the tracing to find the common plane that contains the 2 poles
- The angle between the planes is measured in the plane containing the poles
- The angle determined graphically is 43° (measured to the nearest degree)

