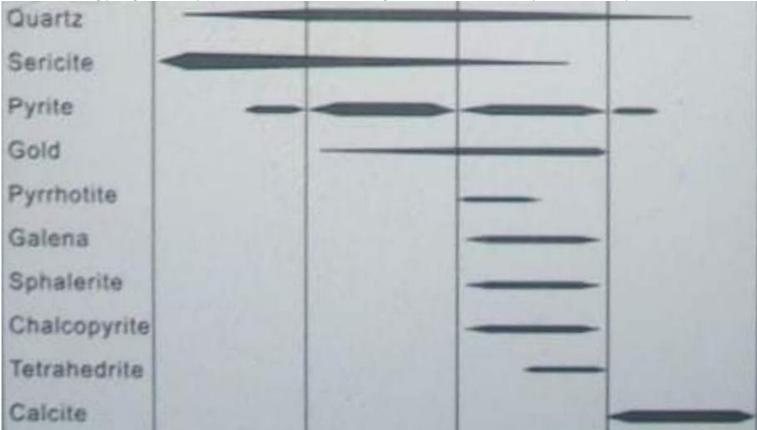
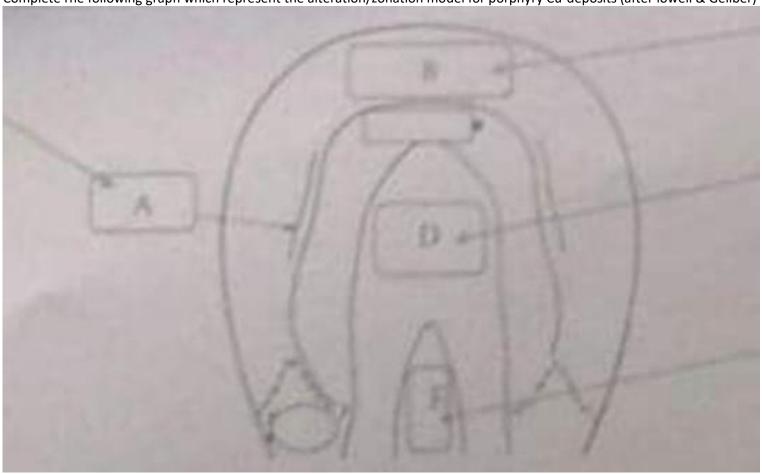
	of Porphyry copper deposi	its has	s morphology				
1.	Stratabound shape	2.	Replacement irregular	3.	Disseminated irregular	4.	Manto- type
Oxida	tion-reduction reactions cl	hange	the redox state of elements su	uch as	S		
1.	Magnesium	2.	Copper	3.	Gold	4.	Iron
All of	the following are consider	ed No	n metallic Industrial material e	except	t		
1.	Kaolinite	2.	Barite	3.	Phosphate	4.	Lead
You e	xpect to find most of the c	umula	ate textures & crystals at	o	f the intrusion		
1.	The roof	2.	The middle	3.	The floor	4.	The adjacent rocks
Most	hydration hydrothermal re	actio	ns are considered as	Rae	ection		
1.	Retograde	2.	Irreverible	3.	Prograde	4.	Isochemical
The m	nagmatic process(s) that is	mainl	y responsible for chromite dep	osits	is		
1.	Magmatic Mixing	2.	Magma Immiscibility	3.	Fractional crystallization	4	. Assimilation
The fe	elsic porphyry igneous rock	s sucl	h as granite or Rhyolite would	more	likely to include		
1.	Chromite	2.	Porphyry Cu – Mo	3.	Porphyry Cu	4.	Porphyry Mo
Order	the followings according t	to the	proper accumulated depth &	temp	erature that they are form	ed at	(Oil = O, Gas = G, Tar
	= TS, & oil shale = OS)			·	•		
1.	GS > OS > O > TS	2.	O > G > OS > TS	3.	TS > OS > O > G	4.	G > O > OS > TS
The p	roduction of organic matte	er acc	ount for the bulk organic mate	rial th	nat can be transformed into	oil co	omes from
			Swamps paints	3.	Diatoms	4.	
			trap will be considered cap lay				
	_		Salt diaper		Sandstone	4.	Conglometate
	will be metamorphosed, t		-				
	-	-	Anthracite	3.	Chromatite	4.	Eclogite
	•		h as granite or Rhyolite would			••	20108110
1.	Graphite		Anthracite	3.	Chromatite	4.	Eclogite
	•		of the porphyry copper ore	J.	Cinomatic	٦.	Leiogite
	Argillic	2.	Phylic	3.	Potassic	4.	Propylitic
	•		accumulation of organic matte			٦.	Торуппс
			Biogenic breakdown		Oxidation	4.	All of them
	n of the following represen		•	٥.	Oxidation	4.	All of them
1.	Basin	2.	Dome	3.	Lenses	4.	Unconformity
						4.	Officonformity
	-	_	processes in Jordan are focusing North Western	_	Central Western	1	South western
			v. pollution impact on Atmosph				
	Wood		Coal		Natural Gas	4.	Oil
			d in area of Pla				0
1.	Strike slip	2.	Divergent	3.	Hot spots	4.	Convergent
	consists of grains that are c			2	D I		D'I
1.	Liginite	2.	Macerals	3.	Peat	4.	Bitumen
			dow), the source rock will prod				
1. 	Kerogen		Oil shale	3.	Gas		4. Petroleum Oil
	nain organic material comp	_		_			
1.	Lignite	2.	Kerogen	3.	Bituminous Cool	4.	Anthracite
_	of the rocks in Bushveld Co	•		_			
1.	Intermediate-Felsic	2.	Metamorphic	3.	Mafic-Intermediate	4.	Ultramafic-Mafic
	nain driving force for petro		_				
1.	Buoyancy	2.	Magnetism	3.	Immiscibility	4.	Gravity Settling
	_		trap will be considered reserve				
	Sandstone		Fossiliferous Shale	3.	Salt Diaper	4.	Bituemenous Shale
The O	il shale in Jordan is hosted		•				
1.	Muwaqar Chalk Marl	2.	Kurnub Sandstones	3.	Al Hisa Phosphorites 4.	Pre	ecambrian bazement
The m) of th	e Bushveld Chromite deposits	is typ	ically		
1.	Irregular veinlets	2.	Stratabound	3.	Dissiminated	4.	Replacement
Most	Rare Earth Elements (RRE)	ores	are extracted from this rock				
1.	Gabbro	2.	Carbonatites	3.	Granite	4.	Carbonates
In the	oil & gas Tertiary Producti	ion (E	nhanced Oil Recovery, EOR) th	e foll	owing procedures are takin	g plac	ce, except
1.	Injection of CO ₂	2.	Injection of alkalines	3.	Water flooding	4.	Combustion at margins

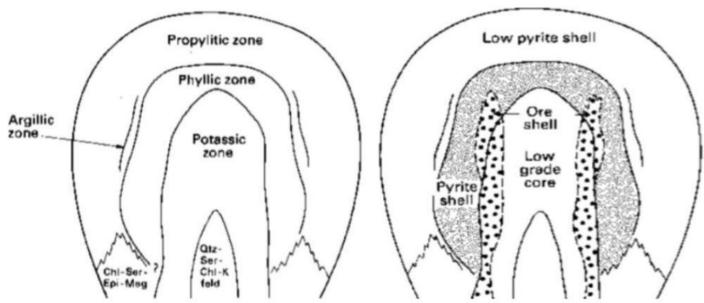
1


In Jordan, Oil shale projects usu	ually suf	fer & have some barriers of	due to								
1. All is true	2. F	Flocculation in oil prices	3.	Env. problems	4. Huge	water consumption					
Why heavy oil & Tar sands are r	not wide	ely used for generating oil									
 They can't be converted t 	to gasoli	ine easily 2	. They	have high Sulfur & Ni	itrogen co	mpounds					
3. They contain high metal of	concenti	ration (Ni , V , Cr) 4	. All of								
Oil generation may start at one	the foll	lowing temperature (in Ce	lsius)								
1. 60	2. 8	80	3.	120	4.	250					
Coal deposits are abundant with	hin the	following geologic times e	xcept								
 Jurrasic 	2. (Carboniferous	3.	Permian	4.	Ordovician					
The morphology of "stockwork"	" Depos	its is considered as									
1. Tabular 2. Irregular 3. Stratiform 4. All of them Changes concentration of trace elements or the amount of isotopes of an element included in the mineral is known as											
Changes concentration of trace					the miner	al is known as					
 Paragensis 		Mineral assemblages	3.	Time relationships	4.	Zoning					
The best geophysical technique		· · · · · · · · · · · · · · · · · · ·									
1. Gravity		Aeromagnetics	3.	Seismic	4.	Satellite Images					
Can we use gold as a pathfinder											
1. Yes		No	3.	Maybe	4.	In some cases					
Which of the following could be											
1. Limestone		Sandstone	3.	Salt rock	4.	Basalt					
Which of the following could be											
1. Shale		Limestone		Salt rock	4.	Basalt					
A location in Jordan that might						_					
1. Ajloune		Central Jordan	3.	Aqaba	4.	Mafraq					
The principal magmatic (differe											
_		Magma Assimilaton		Magma Immiscibility	/ 4.	Magma Mixing					
The most common method that			-								
1. Strip Mining		Dredge Mining	3.	Contour Mining	4.	Magma Mixing					
Most of oil generation occurs d	_	-									
1. Diagenesis		Catagenesis	3.	Metagenesis	4.	Coalification					
Ore form (shape) of the Chromi	-	-									
1. Dissiminated		Vein type		Parallel Stratiforms		O .					
In Bushveld complex the signific					-	·					
1. Basal zone		Lower Critical Zones		Middle zone	4.	Upper critical zone					
Most of the oil shale in Jordan i											
 Wadi Alshallaha The largest Oil Field in the Worl Ghawar, Saudi Arabia 	2. \	Wadi Al-Sir	3.	Kurnub	4.	All of them					
The largest Oil Field in the Worl	ld is	& is found in									
				Burgan, Qatar		Zakum, UAE					
When bituminous coal is expose		-									
1. Oil Shale		Liginite	3.	Diamond	4.	Anthracite					
Oil is recovered from Oil shale o						- 6					
1. Smelting		Flotation	3.	Pyrolysis	4.						
If Chalcopyrite (ore mineral for	=	· · · · · · · · · · · · · · · · · · ·			•						
1. O ₂ (Oxygen)		CO₂ (Carbon dioxide)	3.	CO (carbon Monoxid	le) 4.	SO₃ (Sulfur trioxide)					
The main method of Undergrou		•	_								
1. Room and Pillars		Contour mining	3.	Shrinkage stoping	4.	Cut & fill stoping					
What is the main ore mineral fo	-	- : :	_								
1. Hematite		Pyrite		Chalcopyrite		Malachite					
Calculate the ore reserve of a c				of 200m ² & the thic	kness of th	ie ore bearing layers is					
4m & the specific Gravity of the ore is 8g/cm³ while the grade of 10%											
R = Area x Specific Gravity x Thickness x Grade (Weigh Percent)											
$R = AxSxTxwt\% = \frac{\left(200m^2x4mx8gx10\right)}{(100xcm^3)} = 6.4x10^{11}g = 640 Mkg$											
		•	•								
If the ore thickness 100m in a w						m to maintain profit					
	Strip	$ping Ratio = \frac{X_{overburd}}{X_{ore}}$	len < 5 -	$\rightarrow \frac{X}{100m} < 5 \rightarrow X <$	< 500 <i>m</i>						
Write a balanced chemical reac		prograde metasomatic hydele is Silicification of carbon			. + CO ₂						

Earth Recourse & the Environments : Test Bank


Shaas N Hamdan

2



All of them except of calcite (Quartz, Sericite, Pyrite, Gold, Galena, Sphalerite, Chalcopyrite, & Tetrahedrite)
Complete rhe following graph which represent the alteration/zonation model for porphyry Cu-deposits (after lowell & Gellber)

- A. Argillic Zone
- **B.** Propylitic zone
- D. Potassic zone
- E. Quartz-Sersite-Chlorite-K-feldspare

The amount of material in the ground that can be extracted at a profit & we are certain of its tonnage & grade is **Indicated Resource** 2. Measured Reserve (proven) 3. Indicated (probable) Inferred (possible) One of the following is a mineral within the igneous rock that may yield a Cu-rich solution 1. K Feldspar 2. **Biotite** Quartz **Pyroxene** Factors that are necessary to form ore deposits are 1. Source & Energy 2. Means of transportation 3. Means of concentration All of them Products of hydrothermal alteration depends on all of the following except Wall rock chemistry 2. T-P at the alteration time HF Chemistry Price of commodity The most dominant fluids on planet Earth is 3. Aqueous 4. 1. Magmatic 2. Tectonic Non aqueous The method of separation metals by concentrates into 2 immiscible phases using pyro-metallurgy is known as Metalogensis Crushing **Smelting Pulverizing** 2. What is the main ore mineral for producing Copper in the world 1. Hematite 2. 3. Chalcopyrite 4. Malachite Pyrite All of the following are classified as base metals except ___ 1. 2. Iron Lead Copper Analysis of ancient hydrothermal solutions could be done using 1. **XRD** 2. XRF 3 Fluid inclusions Oroscopy All of the following are considered Non metallic Industrial material except 1. 2. Lead 3. Phosphate Barite The grade that is below which a given metal and rock are sent to waste (are not sent to the mill) **Cut-off grade** Mineralogical limit Ore grade 2. 3. Enrichment factor Elements that generally (preferentially) occur with native sulfur are known as ____ Siderophile 4. Atmophile 2. 3. Chalcophile Lithophile A naturally occurring material from which a mineral or minerals of economic value can be extracted at a reasonable profit is 1. Reserve 2. Ore 3. Mineral deposits 4. **Economic Geology** What is the best geophysical exploration techniques would use for ore body of pyrite (FeS₂) & galena (PbS) 2. Seismic 3. Magnetic **Induced Polarization** 1. Gravity In order chloride complexes being able to carry significant amounts of metal, the solution should have Metal > Sulfur 3. Metal < Sulfur Sulfur has no affect Metal = Sulfur 2. One of the following is a mineral within the igneous rock that may yield a rich Pb-solution 1. Honblende 2. Olivine 3. Quartz K-feldspar The degree of inrichment of metals of interest is tamed as Cut-off grade 2. Concentration factor 3. Enrichment factor 4. Ore grade The fire assay are used for the 3. Chlorite 1. Gold Iron Sulfur 4 Elements that generally (preferentially) occur with native iron are known as ___ Atmophile 2. Siderophile 3. Chalcophile Lithophile A concentration of 0.002% is equal to ppm

200

4.

2000

1.

A conc	entratior	า of 30	00ppm	is equ	al to	%									
1.	0.03			2.	0.3			3.	3.0			4.	30		
All of the following are Non-renewable resource except															
1.	Oil			2.	Gravel	& Sand		3.	Wate	er		4.	Copper		
A concentration of 0.4% of metal = ppm (0.4% * 10,000 = 4000ppm)															
What is the source of heat for hydrothermal fluids															
1. Magma: directly (released by mineral crystallization) or indirectly (located near plutonic bodies)															
2. Burial: shallow burial (heated by G.G), or Metamorphism (heated by burial + tectonism)															
Fire	Assay	is	used	for			metals,	&	the	main	limitations	fo	r this	method	is/are
					-		-	-	_	-	g methods (1	-			cted by
	_	-		_			-			lage & e	extracted by	AAS, I	CPES, & X	(RF)	
Resoonse for changing of metal price over time? (of your metals)															
Your metal commudity platinum															
 Changing the mining cost: as mining cost of measured reserves increase → project falls 															
2. Changing the value of by-product: as value of by-product increases of measured reserves, the mining increases															
(لان استخداماته اصبحت اكثر من السابق كاستخدامه بالسيارات والهواتف والمجال الطبي)															
The T drop to more than°C is needed to forming the deposit, & the T drop due to (20°C)															
						_	=	_			to hydrosta	tic			
			_	_	•		nal fluids					_			
How dose the water derived from metamorphism? By dehydration reaction (conversion of clay to mica)															
			,			•	-	us flu	iids (me	eteoric w	ater orconn	ate w	ater)		
				_	ock will d	•	_						<i>(</i> -)		
1. Porosity: is a volume of the spaces in a rock per total volume of rock, decreases with depth (P)															
2. Permability (rock quality) : is the ability of fluids to movement through a rocks, is a quantified measurement & depending on viscosity which depend on T, composition, & density															
depending on viscosity which depend on 1, composition, & density List 4 geological factor affects the economics of the deposits & why? اذكر 4 عوامل حيولوجية تؤثر على قرارك بتعدين الخام واذكر لماذا تؤثر															
1. Ore grade: هو من العوامل الهامة، وزيادته تؤدي لزيادة التعدين او اختيار تعدين المنطقة															
على الرغم انه ليس جيولوجي الا اننا لا نستطيع تعدين خام معين وتكلفة تعدينه اكبر من ثمنه :2. Value of by-product															
3.							عدين :osits					•			
											ب ص من هذه الموا	ث التخلم	التعدين حيد	وثر على تكلفه	لانه ي
5.	•		,		,		ين دن الذي يعدر			,				2 33	-